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Exact N -envelope-soliton solutions have been obtained for the following nonlinear wave equation,

Y/t +i3alylPay/ox + %y /ox? +ivd3y/ox® +61¥1*y = 0, where a, 8, v and & are real positive

constants with the relation af = ¥8. In one limit of & = ¥y = 0, the equation reduces to the nonlinear
Schrodinger equation which describes a plane self-focusing and one-dimensional self-modulation of
waves in nonlinear dispersive media. In another limit, 8 = 8 = 0, the equation for real ¥, reduces to
the modified Korteweg—de Vries equation. Hence, the solutions reveal the close relation between

classical solitons and envelope-solitons.

1. INTRODUCTION

In previous papers, hereafter referred to as 11,112 III3,
we obtained exact N-soliton solutions of various non-
linear wave equations by transforming the nonlinear
equations into homogeneous forms of the second degree.

In Paper I we considered the Korteweg-de Vries equa-
tion,4”6 of the following form

3
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The equation is transformed using the relation, u(x, £)
= 22 logf(x, t)/3x2 into the following
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In Paper II, we considered the modified Korteweg-de
Vries equation? of the following form

3
90 | 940230 430 _

1.3
at at  9x3 (1.3)

The equation is transformed using the relation, v(x, #)
= 3[tan~1(g(x, t)/f(x, t))]/9x into the following coupled
equations,

) 0 ) d Py —
(G5 * Gome) Joto s 0t e =0
(1.4)

- a—)2[f(x, Df, £)

ax ax’
+ g0, g’ )] 5¢ =41, x=0r = 0. (1.5)

In Paper III, we considered the sine-Gordon equation8,9
(1.6)

The equation is transformed using the relation ¢(x, t)
= 4 tan~1[ g(x, t)/f(x, t)] into the following coupled equa-
tions,
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(& -2) - -2 Juworw.n

_g(x’t)g(xlg tl)]atl:t',x:x’__-o' (1.8)
In the present paper we consider the following nonlinear
wave equation,

Ay W a2y 33y
] —— ; 2 __ — Py —— -
vl iyt v 5|¢12¢,_0.(1.9)

In one limit, the equation reduces to the nonlinear
Schrodinger equation!® which describes plane self-
focusing and one-dimensional self-modulation of waves
in nonlinear dispersive media. In another limit, the equa-
tion for real ¥ reduces to the modified Korteweg-de
Vries equation.

We shall obtain exact N-envelope-soliton solutions of the
equation by using the same method (one based on intui-
tion and experience) as was used in Papers 1,1l and III.

Zakharov and Shabat10 have obtained exact N-envelope-
soliton solutions of the nonlinear Schrddinger equation
by reducing it to the inverse scattering problem for a
certain linear differential operator. Recently Wadatill
obtained exact N-soliton solutions of the modified
Korteweg-de Vries equation by using an inverse problem
method similar to that of Zakharov and Shabat. However,
the inverse problem method is applicable only to equa-
tions of the type

du

at Stu
where S is a nonlinear operator differential in x. Al-
though our method is rather heuristic in comparison
with the inverse problem method, it should be noted that
the present method is very flexible and is applicable to
various types of nonlinear wave equations.

(1.10)

In succeeding papers we shall obtain exact N-soliton
solutions of the following nonlinear wave equations by
using the same method:

32w 92w?
at2 0x2 9x2 x4

4
0%w _ o, (1.11)

which describes motions of long waves in shallow water
under gravityl2 and in a one-dimensional nonlinear
lattice,13

(i) 22

SR+ V) =V, + Y, — 2V, (1.12)

which describes wave propagation in a nonlinear, lumped,
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ladder-typel4 network and the one-dimensional non-
linear lattice studied by M. Toda,!5 and

i) 1 0w,

_n 1.13
1+u2 a3t ( )

SUpiyje — Upaa/2s

which describes wave propagation in a nonlinear, lumped,
self-dual ladder-type network.

2. EXACT N-ENVELOPE SOLITON SOLUTIONS

We describe exact N-envelope-soliton solutions of the
equation

0 0 33
z—tp+z3a|w|2—w+ﬁf—£+z ——lk+6|\,b|21//—0
at ox

2

ox (2.1)
where a, 3,y-and 6 are positive real constants satlsfymg
the relatlon af =0,

In the limit (i) @ = ¢ = 0, the equation reduces to the
nonlinear Schridinger equation,10

a
‘P+ﬁ—i+aw|2w-o

at (2.2)

In the other limit (ii) 8 = 6 = 0, the equation for real ¥
reduces to the modified Korteweg-de Vries equation,2,11

2.3)

Hence, the present solutions reveal the close relation
between classical solitons and envelope-solitons.

In the limit (iii) @ = y = 0, the equation reduces to the
linear partial differential equation

Kl 32y
B—-— iy —=0.

at e (2.4)

We note that our solutions exclude the case (iv) 8 =y = 0.

Exact N-envelope soliton solutions of Eq. (2.1) can be
expressed in the following form

Yix,t) = G(x,t)/F(x,t), (2.5)
where
2N)
F(x,t) = ?1 exp(Z) o up; + Z)um,>, (2.6)
B=
@2N)
G(x,t) = %’1' exp(z_ @i, vy, + Z} v, ,), 2.7
v=0,
2N
G(x, t) - III exp(‘%} (p(l, v, Vj + Z; yi"'i) (2. 8)
where
N, = Pyx— Qt—n), (2.9)
Q, =—ipP? +yP}, fori=1,2,...,2N, (2.10)
and
Ny =15 (2.11)
P,y =Py (2.12)
Q,,=9F fori=1,2,...,N. (2.13)

where * implies a complex conjugate, and

¢(i,§) = log [a/2y(P; + P;)2],
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fori=1,2,...,Nandj=N+1,...,2N,
ori=N+1,...,2Nand j =1,2,...,N, (2.14)
®(i,j) = — log[a/2y(P;, — P;)?],
fori=1,2,...,Nandj=1,2,...,N,
ori=N+1,...,2Nand j=N +1,...,2N, (2.15)

where P; and n? are complex constants relating respec-
tively to the amplitude and phase of the ith soliton,
'—o 1 indicates the summation over all possible com-
=V
binations of p; = 0,1,pu, =0,1,...,p,,=0,1,
= Ey:l“im’z/::o,l and

EZ'=0,1 indicate the summations over all possible com-
binations of v; =0,1,v, = 0,1,...,vyy = 0,1 under the
N
conditions 2, v; = 1 + 21 v;yand 1 + 20 v, =
21::1” ; . TESpectively, and Z}ﬁ? ) indicates the summa-
tion over all possible pairs taken from 2N elements
with the specified condition ¢ < j,as indicated. We
assume all P, are different from each other.

under the condition, Z}ilu i

As an example, we write forms of F and G for N = 2,

F(x,t) =1+ a(1,1*) exp(n; + %) + a(1,2*) exp(n, + n%)
+ a(2,1%) exp(n, + n7) + a(2,2*) exp(n, + n3)
+a(1,2,1*,2%) exp(n, + 0, + 0% + 1), (2.16)

G(x,t) = exp(n,) + exp(n,) + a(1,2,1*%) exp(n, + 1, + 1%)

+ a(1,2,2*) exp(n, + 0y + %), 2.17)

where
a(i, j*) = (P; + P})"2(a/2y), (2.18)
a(i, j) = (P;— P;%(2y/a), (2.19)
a(i*, j*) = (P; — P})%(2y/a), (2. 20)
a(iyj’k*) = a(i’j)q(i’k*)a(j’k*), (221)

and

a(i, j, k*, 1*) = a(i, jla(i, k*)a(i, 1*)a(j, k*)a(j, I*)a(k*,1*).

(2.22)
It is evident that Y(x, ¢), defined by Eqgs. (2.5)-(2.15),is a
solution of Eq. (2.1) provided that F and G satisfy the
following equations:

2
(63 o 32
ot ot ox  ox/,

/3 a2 \?® )
+ l’y(a—— 5;) ]G(x, HF(x’,t )at x=al p=t! = 0
x (2. 23)

Y(i—-——a—> F(x t)F(x t)atx =x', t=t'

ax ox’
= aGlx, G*(x, 1), (2.24)
We note that Eq. (2.24) can be written in the following
form,
22

[y, 012 =2 2= 10gF(x, #)

Yix,0) 2y 327 8 (x,
which corresponds to the relation obtained by Zakharov
and Shabat10;
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2
lutx, )] 2 = V2K -2 1n det]Al.
dx2

It should be noted that the differential operator in Eq.
(2.23),

2 3
.f(3 2 2 0 Al a
i{——— + _—— + 7 —_—
(at at’) ﬁ(ax ax’) 7/<a:‘: ax’) ’

is related to the linear differential operator in Eq. (2.1),

(2. 25)

92 3
gty

Py s (2. 26)

Substituting the expressions for F and G into Egs. (2.23)

and (2. 24), we have
2N 2N 2
2" 2 [z (Z - ng(vi"‘ P'i)) + B(‘;lpi(vi - Pﬂ)

»=0,1 p=0,1
3
Pi)> J

2N
+ iy (Z} Pyv,—

@N)
X exv(Z @, (v + ) + ZI(V + iy )Th) =0
(2.27)
and
2
Y 2! <ZP5(I‘1“‘P4,)>
#=0,1 pr=0,1

N)
X exp E (P(l’])(l-‘d-‘] + “f“j) + E (p; + F‘. >

2N
—a Z)m exp(z; (p(z,])(viv + vjy))

»=0,1 »'=0,1

2N

+ iZ, (v, + v,’)n,) =0. (2.28)

=1
Let the coefficients of the factor
L I+M LM’

[En, + Z) Ny + Z) 2n. + L an] (2.29)

in Egs.(2.27) and (2.28) be D, (1,2,...,L’; 1%, 2%,
L* L +1, ,L + M;(L' + 1)* (L' + M’)*) and

D(12 L1*2* L'*L+1 ,L + M;
(L' + 1) ye s ,(L' + M’)*), respectively.

We have, from Eq. (2. 27)

D,(1,2,...,L;1%,2* ... L**

:L+1,L+2,...,L+M;(L'+ 1) .., (L' + M)
2N
= 22" 23’ condition (v,u.)[i(Z‘, —Q,.(vi—u,.))
v=0,1 u=01 =

X exp <‘§ @ (8, Mvy; + u,-p,)), (2. 30)

where condition (v, p) implies that the summation over
p and v should be performed under the following condi-
tions:

vt =1 fori=1,2,...,L,
v;=p;=1 foréi=L+1,L+2,...,L+M,
v+ ;=0 fori=L+ M+1,L+M+ 2,...,N,
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fori=1,2,...,L,
fori=L+1,L +2,.

Visw T By =1
View = My =1 L+ M,
and
fori=L'+ M +1,

L'"+M +2,...,N.

View t By =0

Under the above conditions we find that the conditions of
p and v in Eq. (2. 30),

N N N N
2iM= 2 Py and v;=1+ ‘EVHN;
i=1 i=1 i=1 i=1

are compatible and mutually convertible from one to the
other if, and only if,

L+2M=1+L"+2M'.

Leto;,=1—2p;, 0,y =—1+2y;fori=1,2,...,N’
under the same conditions. We have

(B i) o5 (B s
2N 3

L L
= i(_ Z)Qio'i - E - ﬂii»N)"i{.N)
i=1 i=1

L L 2
+ B (iE Po; + ,Zi(_ Pi+N)0i+N>
i=

=1

L L 3
+ dy ({Zi Po, + _Zi(_ Pi+N)°i+N> (2. 31)
po i=

and

@N) .

§_ oG, Nvv; + ppsy)
i

<€) (69]
= Ejgo(i,j)%(l + 0,0) + iZj> @i+ N,j+ N31 + 0,50 ,.y)
i< <

L L

+ 22 2o, j+ Nzl ~
i71 571

@
= ‘Z<)] log[2y(P; — P))2/a]- 3(1 + 0,0;)

0,0;,5) + const (independent of o)

@)
+ iZ; log[2y(P;.y — ijv)z/a] 301 + 0i+N°j+N)
<

L L
+ 23 25 1og[2y(P; — (— Pjy))2/a]- 5(1 + 0,0;,y) + const.
== (2.32)
The condition of p in Eq. (2. 30),
N N
Z; p’i = Z; “{41\“
i=1 i=1
is converted to
L Ls
Eci + EUHN =1.
i=1 i=1
Hence, we have,for L + L' = odd,
Dy(1,2,...,L;1*,2% ... [ L'*: L +1,...,L + M;
(L' + D*, ..., (L' + M"Yy
= const D,(P,,P,,..., B, (2.33)



808 Ryogo Hirota: Exact envelope-soliton solutions of a nonlinear wave equation 808

with
DBy, Py, ..., Ppyn)

= ag;hl(Pl&l’Pzaz’ ceesProp0rp0)

X b(Py,8,,Pp,05,...,Prapr 0,10, (2.34)
where
By(P16y,Py0y, ..., Py i8,.10)
L+L" L;L'A 2 L+L' 3
=i<— pD Qi6i> + B<leiai> + iY(E Pﬁi)
i=1 i=1 i=1
and - (2. 35)
b(Py,01,Pp,05,...,Ppy,0,,00)
@’y 5y
= N (24P, — P)2/a]P*01°? (2. 36)
i<j
with
P,=P, =9, & =90 fori=1,2,...,L
and
i)i+L =— P}, @i-#L =—Qf, Gu.=0uy

fori=1,2,...,L,

and 23/, implies the summation over all possible com-
binations of §, =+ 1,...,8,,; =+ 1 under the condition
Z}f’:f 6,=1,and HS.’;*].L" indicates the product of all

possible combinations of pairs chosen from L + L’
elements.

Similar procedures give, for L + L' = even, that

Dy(1,2,...,L;1*,2* .. L' L +1,...,L + M;

(L' +1)*,..., (L' + M")*)
= const Dy(P,, Py, ..., P10 (2.37)
with
ﬁz(Pl’Pz’ v ,PL+_L’)
=y Z}l hy(P18,, Pybg, ...y Prapr 8.1
[ B
X b(Py,8,,P5,00,...,Pryr, 0007
—a L b(P,0,,P,,8y,...,Pra b0,
o=xl (2. 38)
where
R R . L+L' 2
hy(Pyoy, Poby, ..y Prupty,n) = <¢Zi P,a,) , (2. 39)
and Z}a .,, and Z}Ftl imply that the summations are

over all possible combinations of 6; =+1,0, =+ 1,...,
+1 ’
8., =+ 1 under the condition "% 8, = 0and 173,

= — 2, respectively. Thus, F and G are solutions of Eqgs.
(2.23) and (2. 24) provided that the following identities
hold:

D,(P,,P,,...,P,)=0, foroddn (2. 40)

and
Dy(P,,Py,...,B,) =0,

for even n. (2.41)
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We shall prove the identities by the sgame method as
used in Papers I,II, and III, D, and D, have the follow-
ing properties: (i) D, and D, are symmetric polynom-
ials of P;,P,,...,and P ; (ii) if P, = P, then

A

by(B,,B,,...,B,)

n
=21

2
3[27(131 —~ P)2/a)-D,(Py,B,,...,B,) (2.42)
j=

and

Dy(P,,P,,...,P)

~

n -~ ~ A A Py
=2 0 (2(P) ~ P)2/a]-Dy(Py, Py, B, (2.49)
j=

The identities D; = 0 and ﬁz = 0 are easily verified for
n =1 and n = 2, respectively. Now, assume that the
identities hold for » — 2. Then, relying on properties (i)
and (ii), it is seen that D, and D, can be respectively
factorized by a symmetric polynomial,

®) " 2

n (P,—P

0 (Py— P
of degree n(z — 1). On the other hand, Eqs. (2. 35)-(2. 39)
show that the degree of D, and D, to be z(n — 1)2 + 3
and 3n(r — 2) + 2, respectively. Hence,D, and D, must
be zero for n,and the identities have been proved.

APPENDIX A: SOLUTIONS OF THE MODIFIED
KORTEWEG-DE VRIES EQUATION

As described in the previous section, in the limit 8 = 6
= 0 we have the modified Korteweg-de Vries equation
for real ¥ (= G/F)

Yy Y a3y
— 4+ 3ay2 — 4+ —— = 0, Al
ot LGP (A1)
and
3
[(ait _%> + Y<5a——-a—a—) ]G(x’t)F(xlyt’)at x=x' =00 = 0,
! xl H
o (A2)

aG{x, )G(x, t) = 0.
(A3)

On the other hand, in a previous paper we obtained N-
soliton solutions to the equation

3 2\ )
Y a—x‘_'a? F(x,t)F(x’,t)at x=xl =t T

3
9V | 9492 0¥ L 20 _

A4)
ax 9x3 (
in the following
v =2 tan-1(g/f) (A5)
ox
xf — gfx
_ g — 8l (A6)
2+ g2
where f and g satisfy the following equations:
63
at  at,
s (2o2)’ B OF U ) gt xogr o =0 (AT)
ox 0x’ ’

and
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(—a— - —a—>2[f(x, 0F e, )

ax 9x’

+ glx, t glx’, t’)]at x=x',t=8" = 0. (A8)
A comparison of Egs. (A1) and (A4) suggests that the
functions F(x,?) and G(x, t) can be expressed in
terms of f(x, ) and g(x, t) of Egs. (A7) and (A8). For
simplicity, we put @ = 2 and y = 1, then we have

F(x,t) = f2 + g2,
Gx,t) =2(g,f —&f,)-

It is easily shown that F and G defined by the above equa-
tions actually satisfy Eqs. (A2) and (A3). Substituting
Egs. (A9) and (A10) into Egs. (A2) and (A3) gives

(A9)
(A10)

G,F—GF, +G,, . F—3G, F,+ 3G, ,F,,—GF,,
='“2[g¢f_gft t 8xxn — 38, xSt 38T _gfxxx]
x aa_(fz +g2) +2(f2 + g2)

X

d
X é—x'[gtf_gft +gxxxf—3gxxfx+ 3gxfxx-“gfxxx]

+12(ff, — f2 + 28, , — &2) :—x-(g,f —gf)

—12(g f—gf) f; (ffon —f2+82,, —&2), (A11)
and
FF, —F2— G2

=2(f2+ @) ffox—F2+88,,—82), (A12)

respectively, which clearly shows that F and G satisfy
Eqgs.(A2) and (A3) provided that f and g satisfy Egs.
(A7) and (A8).

APPENDIX B: EXPLICIT FORM OF 2-ENVELOPE-
SOLITON SOLUTION

In order to understand the behaviors of two-envelope
solitons we rewrite y for N = 2 in a symmetrical form
as follows:

Vix,t) = Gx, t)/Fix,t) (B1)
and
F(x,t) = cosha + sinha (tanh§, tanhé,
— sechg; sechf, cos(§, — §,)), (B2)

G(x,t) = A, secht, exp(i{;) (cos¢, + i sing, tanhi,)
+ A, sechf, exp(if,) (cos¢, + i sing, tanhE ), (B3)

where
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expa = | P, — P,|/| P, + P}, (B4)
¢, = arg[(P; — P,)/ (P, + P})}, (B5)
¢, = argf(P, — P,)/(P, + P})], (B6)

and,for i =1, 2,
A, = (y/2a)1/2| P, + P}, (B7)
£, = Re(P;x — Q,t) + const, (B8)
§, =Im(P,x — Q1) + const. (B9)
In the limit ¢ —» — ©, keeping £, finite, we have for
Re(2, — £,) > 0,
F = cosha — sinha tanh{,, (B10)
G = A, sech&; exp(i(§, — ¢;)) (B11)
and .
In the limit ¢ — ©, keeping £, finite, we have for
Re(2, — 2,) >0,
F = cosha + sinha tanh{,, (B13)
G = A, sechf, exp(i(§; + ¢4)) (B14)
and
Wix, 8) =A1 exp(i(§, + ¢4)) ) (B15)

cosh(¢, + a)

The present form for Y (x, ¢) is convenient for calculat-
ing detailed behaviors of two envelope-solitons during
the overlap time interval.
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Exact N-soliton solutions of the wave equation of long
waves in shallow-water and in nonlinear lattices
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Exact N -soliton solutions have been obtained for the nonlinear wave equation

?wfort — a%wfax® — 6(32w? [x?) — 3* w/dx* = 0 which describes motions of long waves in
one-dimensional nonlinear lattices and in shallow-water under gravity. The solutions have the same
functional form as N -solition solutions of the Korteweg—~de Vries equation.

1. INTRODUCTION

This paper is the fifth of a series of papers on exact N-
solutions.1~4 In the present paper we obtain exact N-
soliton solutions of the following nonlinear wave equa-
tion,

— — =0, 1.1)

which describes motions of long waves in one-dimen-~
sional nonlinear lattices5 and in shallow water under
gravity6. The quantities w, x,and ¢ can be rescaled to
produce any desired coefficients for the terms of Eq.
(1.1). The present choice is convenient for this paper.

It is known that Eq. (1. 1) reduces to the Korteweg—de
Vries equation in the long wave and weakly nonlinear
limit, ‘

ou ou 93u

— tu— +6—=0,

1.2
ot 9x ox3 .2)

6 = const,

for which exact N-soliton solutions have been ob-
tained.1.7.8

It is noted that Eq. (1. 1) is of the second order in time
and Eq. (1. 2) is of the first; hence Eq. (1. 1) describes
solitons 9. 10 propagating in opposite directions while
Eq. (1. 2) does not. In spite of this fact we will find that
N-soliton solutions of Eq. (1. 1) have the same functional
forms as those of Eq. (1. 2).

2. FUNDAMENTAL PROPERTIES OF SOLITON
SOLUTIONS

In this section we consider fundamental properties of
soliton solutions without knowing exact solutions. In a
previous paperl0 we explained the fundamental proper-
ties of “lattice solitons” in terms of the properties of
nonlinear LC networks.

In order to follow a similar procedure here,we trans-
form Eq. (1. 1) into the following simultaneous equation
by introducing a new function u(x, t)

g_’;’=_%, 2. 1)
%’ti =— aix(w +6w2 +w,), (2.2)

where the subscript indicates the partial differentiation.

For a wave pulse (soliton) solution defined by the condi-
tion that w(x, t), u(x, t) and their derivatives vanish at
|| = « and/or |x| = ©, we obtain the following con-
servation laws by integrating Eqs. (2. 1) and (2. 2):

f_iw(x, t)dx = const, 2. 3)
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[ :u(x, f)dt = const, (2. 4)
f_iu(x, t)dx = const, (2. 5)
f_‘:u(x, Hw/(x,t)dx = const, (2. 6)

and

f_:[%(uz +w?2) + 4w3 + ww,, — 3w2]dt = const,
2.7)

where Egs. (2. 6) and (2. 7) correspond to the total energy
and power conservation laws, respectively. We shall ex-
plain the fundamental properties of soliton solutions by
using these conservation laws.

(i) Velocity of a soliton: If a wave pulse propagates
through a medium without changing its shape and velo-
city,

w(x,t) =w(px — Qf) (2. 8)
and

u(x,t) = uw(Px — Q), (2. 9)
we obtain the following relations:

Quw(x,t) = Pu{x,?), (2.10)

Qu(x,t) =P{w + 6w2 +w,,). (2.11)
From Eqgs. (2. 10) and (2. 11), we have

@/P)2 = ([Zwax +6[ " w2dn)/ [T wdx,  (2.12)

which shows that the velocity of a wave pulse, /P, is
greater than unity and increases with increasing pulse
height provided that w(x, £) > 0.

(ii) Collision of two solitons: As was pointed out in
previous papers,5:10.11 when two solitons collide and
overlap with each other, the total energy and power con-
servation laws play important roles in determining the
behavior of the joint amplitude of the two solitons during
the overlapping time interval. We shall return to this
point after we obtain an explicit form for two-soliton
solutions.

(iii)) Consevvation of the total phase shift: We shall
prove that a weighted sum of the phase shifts of indivi-
dual solitons gained by multiple collisions with other
solitons is zero.8.10

Consgider a sufficiently large time 7. For { <— T <0 we
assume N independent solitons with phases 6_(i) (i =
1,2,...,N) before collisions,

N
wx, ) = Z;wi(Pix —Q;t— 6.(2). (2.13)

i
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For ¢ > T,we assume that each soliton changes its
phase only, from §_(i) to 6, (¢), after multiple collisions
with other solitons,

N

w®(x,8) = L w (P;x —Q;t—6,). (2.14)
=1

We rewrite one of the conservation laws, Eq. (2. 5),

f_iu(x, t)dx = f_:x (— %u(x, t)) dx

=9 fwxw(x, t)dx.
ot Y-

(2. 15)
(2.16)
Substituting Eq. (2. 13) into Eq. (2. 16) gives,for t <— T,

N
— f " wy(n;)dn ;. (2.17)

1-1

f_:)u(x,t)dx =

On the other hand, integrating Eq. (2. 16) from 7', <—T
to T, > T and employing Egs. (2. 13) and (2. 14), we have

N
(Ty — T [ ulx, hdx = 2 [@dT, = Ty) + 8,6) — 6.6)]

X P;zf_:wi(ni)dni. (2.18)
Substituting Eq. (2. 17) into Eq. (2. 18) gives
N o o0
L [6.) — 6.0 P2 [ win)dn, = 0, (2.19)

i=1

which shows that the weighted sum of the phase shifts of
individual solitons is zero. As is shown later, the ex-
plicit form of a single soliton gives

P2 "wmn)dn, =1 (2. 20)
and hence

N

Z; [6.() — 8_(5)] = 0. (2.21)

3. EXACT N-SOLITON SOLUTIONS

We now describe exact N-soliton solutions of the equa-
tion

92w2 04w —o 3.1)
a2 px2 ax2  oxd )

Exact N-soliton solutions can be expressed in the follow-
ing form:

32
w(x, t) = Ing(x; t); (3' 2)
0x2
N) N
flx,t) = E exp(Z) @, fuu; + Ziuini>, 3.3)
i<j i=
n,=P;x—eQ,t—n9 (e;=+1or—-1), (3.4)
Q,=P,(1 +P2)1/2, (3. 5)
Q. — €.Q.)2 — (P,—P;)2— (P,—P,)4
xol (i, ) = — ik~ &%)~ Py = By)P - (P~ Fy)

(€:9; + ;)2 — (P, + P;))2 — (P, + P;)*

(3.6)
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_ (e,v;— €;v;)2 + 3(P;— P;)2 3.7
(e;v;,— €;0;)2 + 3(P; + P;)2’ '
= (1 +P2)1/2, 3.8)

where P, and 19 are the real constants relating to the
amplitude and phase, respectively, of the ith soliton,
Z,-0,1 implies the summation over all possible combi-
nations of y; = 0,1, po,=0,1,...,u,y =0.12and

Efiv ) indicates the summation over all possible pairs
chosen from N elements.

We note that the above expression for f is equivalent to
the following form:

f(x t)'—l + Z: Ea(zl,zz, L] n)

xexp(ntl+n1.2+ .o +nin) (3. 9)
where
(n)
afiy,inye.-,1,) =k1'[ a(i,,i,), (3.10)
<1
a(iy,i;) = exp{@(E,,1;)) (3.11)

nC , indicates the summation over all posmble combi-

nations of » elements taken from N, and l'I mdlcates
the product of all possible combmatlons of the n ele-
ments. This expression for f has the same functional
form as one obtained for N-soliton solutions of the
Korteweg—de Vries equation.1

As an example we write the form of f(x,#) for N = 2,
fle,t) =1 + " + e"2 + a(1,2)e"1" "2, (3.12)
It is easily seen that w(x, f) defined by Eq. (3.2) is a

solution of Eq. (3. 1) provided that f satisfies the follow-
ing equation:

b 2 \2 0 o\ 2 0 o\4
at ot ax  ox’ ax  ox’

Xf(x, t)f(x'yt’)atx=x',t=tr = 0. (3. 13)

It is noted that the differential operators in Eq. (3. 13),

a 2\2 d 9\ 2 0 2\4
——=) - -2 -, 619
ot ot 0x ox 0x ox
are related to the linear differential operator in Eq.
@3.1),

(3.15)

Substituting Eq. (3. 3) into Eq. (3. 13), we have

IEEDD [(259(#;‘_ t>2'—<ZN:Pi(#i_Vi)>2
p=0,1 v=0,1 i=1
_<2Pi(”i_vi>4:]
=1

w) N
x exP(Z (P(i,j)(#iuj +tyv;) + 'Z:l(“i + Vi)Tli>= 0
i<j i=

(3. 16)
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Let the coefficients of the factor

exp (Z)n,+ 2 2n> (3.17)

i=n+l

in Eq. (3. 16) be D(1,2,..

n+1ln+2,,..,m) We
have .

D(1,2,...,myn+1,n+2,...,m)
p=0,1 »-0,1

i N

W)
X exp <E (P(i,j)([.l.,-uj + Viv; >;
i<j

N
2. cond(p, v). [<§€¢ﬂi(#i— Vi) 2

(3.18)

where cond(u, ¥) implies that the summation over p and
v should be performed under the conditions

w;tv;=1 fori=1,2,...,n,
u;=v;=1 fori=n+1n+2,...,m, (3.19)
wi=v;=0 fori=m+1m+2,...,N.
Let 1 — 2y, = 0,,then we find
D(1,2,...,m;m + 1,n +2,...,m)
= const-D(P;,P,,...,P,) (3.20)
with
bw,,pP,,...,P)
= Zjh(P1 01sPg03, ., P,0,)0(Py,0,,Py,05,...,P,,0,),
a=
(3.21)
where
n
h(P,0,,P,0,,...,P,0,) = (?;i e,P,v,ai>
n n
—( P,.o,) 2— (Z)P,.o,) 4 (3.22)
i=1 -1
and

(n) 2
W= n [(e;v;,— €;v;)
i<j

b(Py,04,Py,09,...,P,,0 iY;

+3(P,0,—P;0;)%]. (3.23)
Here, we have used the relation

06,1 + 0,0,)

v, —€,0;)2 + 3(P,—P,)2
=3(1+ 0;0,) log (€40, ) (P, —Py)
(€;v; — €;0;)2 + 3(P; + P;)2
(3.24)
= logl(e;v; — €;v;)2 + 3(Pi°i_PjUj)2]
—logl(e, v, — €;v,;)2 + 3(P, + P;)2]. (3.25)

Thus, f(x,t) is the solution of Eq. (3.11) provided that
the following identity holds:

bwp,P,,...,P)=0 forn=1,2,...,N. (3.26)
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The identity can be proved by mathematical induction as
used in the previous papers.1-4 D(Pl,Pz, ..., P)isa
symmetric and even function of P,,P,,.. P and
hence if we consider D to be a function of elvl, €505, .
€,0, [v,=@1 +P3)1/2], D becomes a polynomial of
variables €,0Vq,€305,...,and €, v,

Let e;0,=7,for i = 1,2,.
D).

We find that the polynomial D(5;, 7, .
following properties:

fa DA oA
.,n,and D = D(vy, v,,...,

,0,) has the

(i) D is a symmetric polynomial of D1,0gy0c.,0
(i) if o, =+ 1,

n?

oA ~ ~
Dy, 05,000y 0,)a05 2010 = D(A2,173, ceeyBy,)

(3.27)

(iii) if 5, = 95,

A

D(@1, 09y - 0,)ats -5, = D03, Dy, ..., 5,)- 24P2
L4 ~ A
X l~13[(v1 — v )2 + 3(P; — P[0, — 9;)2 +3(P; +P;)?]
7 (3. 28)
The identity is easily verified for n = 1 and 2. Now,

assume that the identity holds for » — 1 and n» — 2. Then,
relying on properties (i), (ii), and (iii), we see that D
can be factored by a polynomial,

()

I (0, — 6,)2. 11 (52 — 1) (3. 29)
i<j i=1

of degree n(n — 1) + 2n. On the other hand, Eq. (3, 21)

shows the degree of D to be nn — 1) + 4. Hence, D
must be zero for n, and the identity holds.

We shall prove that the solution, Eq. (3. 9), splits into N
solitons in the limit |# | - «©,and obtain the phase
shift of an arbitrary ith soliton induced by collision
with N — 1 other solitons.

At first we consider the case of ¢t —» ., In the limit
t — wo,keeping 7, finite, we have

'-Pj[(ﬂi/Pi)—‘(Qj/Pj)]t_n? (3.30)
and can assume without losing generality,
N1sMgseeesNir =% (3.31)
n ; = finite, (3.32)
and
Nis1aMiegse sy =— 9. (3.33)
Therefore, we find
tlim exp(—nl—nz—- . —ni_l)f(x,t)
niﬁn?te
=gq(1,2,...,i—1) + a(1,2,...,i) exp(n;) (3. 34)
= a(lv 2,...,i— 1) {1 + eXP[n,- - 6+(l)]}’ (3. 35)
where
-1
j=
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and obtain an asymptotic form of the ith soliton in the
limit £ — oo,

w,(xt) = (P,/2)2 sech?{[n, — 6,(i))/2}. (3.37)
The same procedure as the one used for the case of
t = © gives an asymptotic form of the 7th soliton in the
limit { —» ~ . In the limit { —» - «©,keeping 7, finite,
we find

w_(x,t) = (P;/2)2 sech2?{[n; — 6_())/2}, (3.38)
where
N
5.(1) = — .Zl¢(i’j)' (3.39)
]=l+

Thus, we have proved that the solution really splits
apart into N solitons in the limit of |¢| — ®, This im-
plies that a soliton conserves its identity after colliding
with other solitons.8.12 The effect of collisions appears
only in the relative phase shift 5(¢) defined by

6(0) = 56.(5) — 6.(d). (3. 40)
As was proved in the previous section, we find

N

22 8() = 0. (3. 41)

i=1

For a single soliton,we find by using Eq. (3. 37) that

S wim)an, = (P,/2)2[" sech2{n,— 6(:))/2}dn,

=p2, (3. 42)

which assures Eq. (2. 20).

4. TWO-SOLITON SOLUTIONS

The results obtained in the previous section show that
the relative phase shift §(7) induced by multiple colli-
sions with N — 1 other solitons is the sum of the rela-
tive phase shifts induced by an independent collision
with each of N — 1 other solitons; there is no many-body
effect. Therefore, it suffices to study a single collision
to obtain an understanding of multiple collisions of N
solitons.

We write the two-soliton solutions in the following form:

g7 sech?f; + g% sech2t, + A sech?f, sech2t,

w(x, t) = ’
[cosh(¢/2) + sinh(¢/2) tanhé, tanhé,)2
(4.1)
where
gl =q1x—w1t, (4. 2)
52 =q2x_w2t, (4. 3)
Wy, = €19101, (4. 4)
Wy = €5q5Uy, (4.5)
vy = (1 + 4¢)1/2, (4. 6)
v, = (1 + 4¢3)1/2, (4.7)
and
— 2 _ 2
exp(2¢) = (€101 = €yuy)® + 12(q; = gy) (4. 8)

(€101 — €505)2 + 12(q, + q5)2 ’
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A = sinh(¢/2)[(q% + ¢8) sinh(¢/2) + 2¢,4, cosh(¢/2),
(4.9)
where ¢, and g, are arbitrary real constants.

The functional form of w(x, ) is the same as that of
two-lattice soliton solutions V, (¢),9-10 which are the
solutions of the following equation

2
a% log[1 + V(8] = V,,,(6) + V,_,(t) — 2V, (). (4.10)

We give numerical results of Eq. (4. 1) in Figs. 1 and 2
for the case where two solitons at |f | = « have dis-
parate amplitudes (¢§ = 25. 0, ¢ = 6. 25) and are
moving in the same direction and for the case where

X —=

FIG.1. A collision of two solitons having disparate amplitudes, (43 =
25. 0, ¢§ = 6. 25) travelling in the same direction.

+04
+03
+0.2
+0d

-0l
-02
-03
-04

1 L 1 1 | 'l 1 1 1

-4 -3 -2 -1 0 | 2 3 4

FIG, 2. A collision of two solitons having more nearly equal amplitudes,
(g8 = 12.25, g§ = 9.0) travelling in the same direction.

X —

FIG. 3. A head-on-collision of two solitons having the same amplitude
(4% = g% = 9. 0) moving in the opposite directions.
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the amplitudes of the two solitons are more nearly
equal to each other (¢% = 12. 25, ¢% = 9. 0), respective-
ly. For these two cases, the features of two-soliton
interactions are quite similar to those obtained for
two-lattice solitons10 and for solitons of the Korteweg—
de Vries equation.5

In Fig. 3 we give a numerical result of Eq. (4.1) for

the case where two solitons of equal amplitude

(q? = g% = 9. 0) are moving in opposite directions. We
find a distinction between the present result and that of
the two-lattice soliton. When two solitons of equal
amplitude collide and overlap, their joint amplitude is
smaller than twice the amplitude of an individual soli-
ton. We showed in the previous paper!0 that when two
lattice solitons of equal amplitude moving in opposite
directions collide and overlap, their joint amplitude be-
comes greater than twice of the amplitude of an indivi~
dual soliton. The difference is of importance if one
remembers that the present wave equation (1.1) is a
long and weakly nonlinear approximation of Eq. (4. 10).
This implies that the long and weakly nonlinear approxi-
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mation breaks down when it describes phenomena
such as the head-on collision of two solitons where their
joint amplitude becomes large and steep.
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This work consists of two parts. First we consider a general classical relativistic direct interaction theory (for
two point particles) coming from an action principle such that the equations of motion have, at most,
second-order derivatives of the position 4-vectors with respect to proper time. We introduce the general
formalism, derive the explicit form of the conserved quantities, and discuss some particular cases which had
previously been considered in the literature. We analyze in detail the circular orbit sotutions of the general
equations of motion, deriving in particular the constraints which the interaction function must satisfy in
order that such solutions exist. In the second part we study in detail the nonrelativistic limit of the theory,
showing that the limit is perfectly consistent. The obtained Newton equations contain an arbitrary potential

that depends on the relative position and velocity.

i. INTRODUCTION

An alternative way to look at the relativistic bound state
problem in quantum physics, besides techniques such as
the Bethe—Salpeter equation, is to start from the cor-
responding problem in classical physics and then to
quantize. This approach, as far as the general two-body
problem is concerned, is relatively new and up to now the
only results in this line have been obtained using circular
orbit solutions, I"4

The classical two-body problem, so simple in principle
in nonrelativistic mechanics, has at least two important
sources of complications when considered in a relati-
vistic framework.

One of the sources of difficulties—that to a certain
extent we can eliminate — is the fact that interactions
between particles are usually thought of as a mediated
by fields. Fields that carry infinite degrees of freedom,
carry away 4-momentum and angular momentum in the
form of radiation and which, therefore, transform the
problem into a problem of particles and fields.

An interesting line of thought developed by various
authors5 allows the problem to be simplified. They
assume that there is a direct interaction, i.e., that the
fields are not independent objects adding new degrees

of freedom, but only agents that carry the interaction
from one particle, the emitter, to another, the receiver.
It is then assumed that there is no emission unless there
is a receiver,no matter how far the receiver is.

In the present paper we accept this philosophy as a
reasonable generalization of the nonrelativistic interac-
tion where absence of radiation comes naturally. We
shall consider a system of just two particles “alone in
the universe” and hence no radiation takes place.®7

There is another—this time unavoidable—difficulty. Due
to the finite velocity with which a relativistic interaction
propagates, the equations of motion are not instantaneous
but integro-differential. The simpler electromagnetic
interaction case turns these equations into differential-
difference equations with the differences (a measure of
the retarded effects between the particles) depending on
time. No general theory exists for such equations. 8,9
The only situation when the differences do not depend on
time, which has been handled with certain success, is the
case of circular orbit solutions. Another possibility,
less physical but solvable in general, is to transform
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the equations of motion into pure differential equations.
This is achieved by assuming that one particle responds
only to retarded “fields” and the other only to advanced
“fields” and was treated in Ref. 10 by Rudd and Hill.
Even if unphysical, this model has the merit of being the
only known example of an exactly solvable classical
relativistic two-body problem.

The first papers on these lines11 tried to build a con-
sistent direct interaction electrodynamics, i.e., a theory
that yields the same physical conclusions as classical
electrodynamics but avoids the explicit introduction of
fields as independent dynamical quantities. Mesodyna~-
mics has also been considered.l2 Also along these lines
Van Dam and Wigner!3 successively pointed out that it
is possible to consider direct interactions which have no
adjunct particle-field theory, and have discussed in de-
tail a particular example. Several other authors have
been devoted to the analysis of some particular models
of direct interaction theories which can be derived from
an action principle.

An interesting problem which can be studied with such
models is the determination of circular orbit motion,
since in practice (historically) it is the first step to set
up a Bohr-like quantization procedure for a relativistic
two-body system and thus we learn something about the
corresponding fully quantized system. Also the con-
sistency of the nonrelativistic limit is an interesting
problem to consider. Since several attempts have been
made along these lines, making similar calculations for
different but particular choices of the interaction, we
think that it is useful to deal directly with a quite
general theory of direct interaction coming from an
action principle.

In this paper, then, we deal with a Poincaré invariant
direct interaction theory coming from an action integral
defined in Sec.Il. That section serves to define the
basic features of our theory, the equations of motion,
and the conserved quantities. We include also the re-
duction to particular cases considered in the literature.

The general problem of having circular orbit solutions
is considered in Sec.IIl. Since not every interaction
will allow circular orbit solutions, certain general con-
straints on the form of the interaction are found in
order that such solutions exist. It is the first time, as
far as we know, that such constraints are mentioned and
discussed. Moreover, the time-independent equations
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relating the parameters which characterize the circular
orbits and the motion are found. Thus, in this section it
is possible to find all the necessary formulas to make,
for example, a Bohr-like quantization of the circular
motion solutions. This will be done elsewhere.

The problem of proving that our general theory has a
consistent nonrelativistic limit is discussed in Secs. IV
and V. We show that our formalism is richer than many
others considered in the literature also from the point of
view of the nonrelativistic limit. In fact, nonrelativistic
limits considered explicitly in the literature give the
Newton equations of motion for two particles interacting
through a potential which depends only on the modulus

of the relative position of the two particles. On the con-
trary, we shall see that it is possible to build an interac-
tion, the limit of which is a potential theory with velocity
dependent interaction. There is no obvious physical or
mathematical reason to expect that every relativistic
theory should have a consistent nonrelativistic limit.

If. RELATIVISTIC DYNAMICS FOR TWO PARTICLES

We shall consider the classical relativistic dynamics of
two interacting particles, whose position vectors are
x8(1,), (@ = 1, 2), defined by the action,2,14

Ty 2 T’ —
JI = —mlcz j;l’ dTl V§11’"mzc f72' dTZ C22

" 72”
—c frlf dr, sz, dty F (0,841, 8p)

€12:012,931)- (2.1)
In this expression the integration variables correspond—
at this stage — to arbitrary parametrization of the still
undetermined x,(7,); F is an arbitrary function except
that to ensure that the action is independent of the para-
metrization used, it has to satisfy the following two con-
ditions,

oF oF

+Cab ac Uab'm, a,b=1,2,

= 2§aa ac

(2.2)
where the derivatives are with respect to the invariants
defined by

p = [x1(1y) — x5(15) ]2,
ap = (1/c2)xh(T, )xbp(Tb)’

O = (1/0)kh(x, — x,), a,b=12. (2.3)
The two conditions (2. 2) make F a function of only four
of the six invariants; we choose these four arguments to
be p, §15,0,5,0,;. In the following, whenever we write

a derivative of F with respect to {,, this derivative

must be understood as determined by Eq. (2. 2).

After the variational principle is applied we will choose
the parameters 7, to correspond to the proper times of
the correspondmg world lines, which implies that the
components of x# are not all independent but are subject
to the constramt

§11 =83, = L.

We also note that the integrals in (2. 1) are taken be-
tween arbitrary limits 7/, < 7/,. However, since we want
the equations of motion to hold for any time, when de-
riving them from the action principle we must make
T,~>—and 7, + ©,

(2.4)

Furthermore, if the interaction function F is chosen in
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such a way that the particles interact for p = 0 (time-
or lightlike distances), then an explicit dependence on
the sign of (¥ — x9) is allowed since the distinction
between past and future light cones is invariant.

The Euler-Lagrange equations of motion arel5

¢ [Pdr, L -4 JHht e [7ar, oF \ (2.5)

oo 0x,, dT, axa“
with §,; = {,, =1landa=b.
The explicit expression for the integrands are

oF _ O aF xi OF X,
Moy e~ %3) 90,, ¢ 00,, c’ (2.62)
oF 9 oF ik oF x4 1 @oF il

— = — + — + - Xg— Xp)# 2.6b
axa“ ot,, c2 98, €2 ¢ 0, ¥ )

The effect of the operator d/d7, when acting on a pure
function of the four invariants p, {,,, 0,,,0,; is expli-
citly,

d _,., 0  HE, ?
dr, ® 3 2 AL,
XV(x, — x,) a 2
+<“(—“~i_"+c) —ct,—. (2.7
c 90, 90y,

The Poincaré invariance of the action implies that there
are ten conserved quantities associated with the ten
generators of the group. They are the total energy-
momentum four vector

P = m x“ +c — dT
a=Zl;,2< f°° ax ap b
bta
o0 Ta oF
— dry dr/ 2.8
c J;b b f_w a axa“> ( )

and the skew symmetric angular momentum tensor16

Lwv = 25 I:ma(ich;’—ic;’xg)+cfw drf
a=1,2 ~o0
bea
x ( OF v OF xg) +c[Cdr; [Pary (2.9)
axa“ axau Ta «©
x<aF av— O w9y OF xg)].
0%,y x,, 8%y, 0x,,

For completeness we include their derivation in an
appendix. Both quantities satisfy, by definition separate
conservation laws with respect to 7; and 7,:

d d
=7 P#(‘rl‘rz) =T PP('rl'rz),

dt Pr(TyT,) = (2. 10)

and similarly for L*¥,

Let us see now how our general case reduces to cases
already treated in the literature. The choice of the
function F is often made to correspond to that of a field
which has been eliminated from the equations of motion
of an underlying (or adjunct) particle-field interaction
theory. The case of electrodynamics, for example, com-
pels us to choose?.3.5

F = )\é(p)glzy (2- 11)
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thus obtaining the half-retarded half-advanced interac-
tion-at-a-distance electrodynamics considered by
Fokker, Tetrode, Wheeler—Feynman,5 and more recently
by Schild.l Also different types of mesodynamics could
be considered. But there is no need to have an under-
lying field theory—as stressed by Van Dam and Wig-
nerl3—and therefore other choices of F are possible.

Of these we mention

F = V(08T 1428442,

first given by Katz in the Appendix of Ref. 17. It reduces
to the original scalar interaction considered by Katz18
if the value g = 1 is chosen, while for ¢ = 0 (2. 12) gives
rise to the equations of motion considered in Ref. 13.
Degasperis? also has considered (2. 12) to discuss the
circular orbit bound state problem.

(2.12)

As in electrodynamics, if the interaction is at lightlike
distances only, then the integro-differential equations of
motion become differential-difference equations. The
very particular choice

F = A0(x9 — x9)6(0)¢ 1 5 (2.13)
reduces the equations of motion in a two dimensional
Minkowsky space to pure differential equations. The
general solution to these equations was found in Ref. 10.

To extend the formalism to many interacting particles
in a symmetric way, the interaction part of the action
has to be of the form:

c T T

9 Z} f,adTa f deb H(pab’ caa? cbb’ gab, Oap> 0‘ba)'
b g T (2.14)
a#b

This symmetric type of interaction reduces, in the two-

particle case to an actijon (2. 1) with £ satisfying the

symmetry requirement,

F(0811822812012921) = F(PL32811812021012), (2.15)

which is satisfied both by (2. 11) and (2.12).

Finally we want to make a strong but inessential assump-
tion, which is that the function F vanishes for timelike
distances,

F=0 for p>0. (2.16)
We assume (2. 16) for simplicity to avoid weaker, but
longer to explain,assumptions at different key points of
the paper. It is not difficult to find other weaker
assumptions, that do not exclude mesodynamics as con-
dition (2. 16) does, but ours is economic and serves our
present purpose.

Ill. CIRCULAR ORBIT SOLUTIONS

We now want to investigate the possibility of having
circular orbit solutions to our equations of motion (2. 5).

As stressed by several authorsl~4 the derivation of
explicit circular orbit solutions for the equations of
motion is, in practice, the first step to set up a Bohr-
like quantization procedure for a relativistic two-
particle system. Quantization with noncircular orbits

is a complicated job and the only thing that has been
done on this line is in a recent paper by Andersen and
von Baeyer.4 As we shall see, the most general case,
i.e., when the function F has a general dependence on all
four invariants, yields, for fixed values of the masses,
four time-independent equations relating the three para-
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meters: angular velocity w and the radii R,,R, of the
orbits. In this general case, therefore, there cannot al-
ways be a solution. A consistency condition that we shall
make explicit must be satisfied. In the cases when F is
independent of the two invariants o,, and 0,4, two of the
four equations become identities and we recover a situa-
tion similar to that of Ref. 2 even though with a far

more general interaction.

As is usual when dealing with circular orbits, we define
a unit vector @(¢) rotating in a plane with uniform angular
velocity w, so that

A _ wow, B - — wae),

S = (3.1)

¥(¢) also being a uniformly rotating unit vector orthog-
onal to G(z).

The circular orbits of the two particles are now defined
as:

x,(5) =g,RQ), g, =—1, go=1 (3.2)
Hence, the four vectors x¥, (x, — x,)#, x§, X} are

- x“ = C(ta! (gaBa/w)ﬁ(ta ))!

- k# = c'}’a(l’ gaBav(ta))y

— %y = cy2(0,— g,B,wi(t,)),

(x, — x3)# = (cg, /w)26, B,0(¢,) + B,0(L})), (3.3)
where

B,= R,w/c (3.4)
and

22,0 = w(t, — t,). (3.5)

The invariants (2. 3) are easily expressed in terms of
the constants of the problem and the only relevant
variable 6,

p = (c2/w?)[462 — 28,8, cos 26 — (82 + B2)],
Cap = '}’aYb(l + BaBy coS 26),

0, = (y,08,/w)(26 + B, B, sin 26). (3.6)
To determine the conditions under which we actually
have a solution of the equations of motion, we must re-
place Eqgs.(3.3) in Eq. (2. 5). Transforming the integrals
over T, that appear in (2. 5) into integrals over 6 and
noticing that F is now only a function of 8, we obtain
several integrals whose integrands are functions of 6
times a vector @ or ¢. When the vectors @({,) or ¥(¢,)
appear, we express them in terms of d(¢,) and #(¢,),
where £, is the fixed time in (2. 5), by using

a(t,) = cos 20a(t,) — g, sin 209(¢,),

9(t,) = cos 209(t,) + g, sin 20d(,). 3.7

The derivative with respect to 7, on the right-hand side
of (2. 5) can easily be performed using Eq.(3.1).

To express the results concisely, it is convenient to
define the following integrals:

© 9F o OF
Ag=2[ 3d8, C;=2[" 7 cos 20ds, o
3.8

F 640,

F

1%

© 3F _. w
c=2/ gf sin2ed, T =2["

—oo

Jor
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where £ denotes any one of the six invariants on which
F depends. Note that all the above expressions depend
only on the parameters w, Ry, and R,. Also note that
because of (2. 16) the integration over 6 is on a finite
range and the actual limits of integration are, due to the
geometry of the problem, equal and of opposite sign.

Some elementary calculations allow us to prove that the
equations of motion reduce to the following two equalities
(a = 1, 2) between 4-vectors:

4c2 c
Bap +Z(Yen, —a4, ),
w2y, w\y, @ ba

2c2g, cBy
A +8,C)+—S a(¢
(wz’yb (ﬁa P Bb p) w Oba) ( a)

2¢2 ‘
+ (— ‘ B”sp +%apc, b)ﬂt,,))
w a

w2y,

2ga7§ﬁa A

12 taa

S%b) a(t,)

= <O ,<_ ga'}’%Ba"lacw -

Ya CB b
Wyp

Cgayaﬁb
Hremsa R 0

Equating the zero components and the coefficients of
@(¢,) on the left- and right-hand side of (3.9), respec-
tively, we obtain the equations

+ gayﬂBbCCab +

(3.9)

4Cgan = w(')’bAaba - YaAoab), (3. 103,)
- Ygﬁawmac - (Zygﬁa/Yb)A(aa
+vaboCe , + (8274€Bs/wy4)S,,,
= (202/“’275)([54Ap + Bbcp) + (cBbga/w)SOba'
(3. 10b)

As regards the equation which arises from equating the
coefficients of 9(f,) on both sides of (3.9) we note that it
is identically satisfied as a consequence of (3.10a) and of
the identity

o GF
f-w 2546 = 0. (3.11)
Equation (3. 10a) does not involve the masses and it is a
constraint on our interaction function F telling us that
there cannot always be a circular orbit solution of the
equations of motion. As mentioned at the beginning, if
there is no o, -dependence in F, Eq. (3. 10a) is identi-
cally satisfied. In fact, in such a case F is an even func-
tion of 6 [cf. Eq. (3. 6)] so that T, vanishes, while the
right-hand side of (3. 10a) is identically zero. It is im-
mediately verified with the particular choice (2. 12) for
F, that one obtains exactly Eq. (3. 22) of Ref. 2. Obviously
when there is no o,, dependence in F the two Eqs. (3. 10b),
which are the only equations relating w, R; and R,, refer
to a much more general situation than that considered in
Ref.2. As F given by (2. 11) is a particular case of
(2.12), our solution also contains those found by Schild®
and by Anderser and von Baeyer.3

IV. PRELIMINARIES TO STUDY THE
NONRELATIVISTIC LIMIT

In order to study the nonrelativistic 1imit of a general
theory, such as that defined by the action (2. 1), it is
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necessary to make some specific assumptions concern-
ing the behavior of the function F and its derivatives
when ¢ —» ©, Different assumptions will lead, in general,
to different nonrelativistic theories. To make our as-
sumptions clearer, it is convenient first to determine
the nonrelativistic behavior of the basic quantities ap-
pearing in our formalism.

Since we assume that F vanishes for (x, — x;)2 > 0, the
interaction takes place only between two events, x¥ and
x%, which are space- or lightlike separated. The dif-
ference in time between two such events will not be zero
in every reference frame, but it will tend to zero in the
nonrelativistic limit as c¢~1, so that, putting

N =guc(Ty— T,) = (T, — Tq), (4.1)

the nonrelativistic limit of 7 is, in general, different
from zero and finite. In Eq.(4.1),g, =—g&; = 1.

When taking the nonrelativistic limit of an integral ex-
pression such as those appearing in the equations of
motion or in the conserved quantities, we shall make
the change of integration variable from proper time 7,
to the variable n. In this way the integration interval
remains finite, i.e., [— #, 7], where 7 is the modulus of

r = x4(8) — X,(8) = g,[x,(8) — x,(8)]. (4.2)
To deal with double integrals such as those appearing in
Eqs. (2. 8) and (2.9) with integration variables 7, and 7,
the following changes of variables must be made:

Ny = &, ¢(T, — Tp)y Ty = &5C(T5 — T,). (4.3)
It should be made clear that one of the proper times
appearing in the expression of 7 is fixed, and we can
expand about this time. Let 7, be the fixed time in (4. 1);
then

dn = cdr, (4.4)
(g, does not appear in this expression since the right
ordering of the integration limits takes care of the
correct sign). We will often need to expand about 7, by
means of

Ty = T,— g, /€. (4.5)
Thus,

x(7,) = x,(7,) — (g,1/€)iy(7,) (4.6)
and
7 = gy[x,(7)) — xp(Tp)]*

= {0+ [(d/c) + (f/c2)] gy, x — (n/O)Rp(T)}.  (4.7)

In the last expression d and f are constants which depend
parametrically on 7, and come from the connection
between time and proper time.

From (4.1), (4. 2), (4. 5), (4. 6), and (4. 7) the behavior of
our four fundamental invariants near the nonrelativistic
limit is

p=n2—7r2+@2n/c)r 'k, +g,d], £, ~1+2v2/232,

(4.8)
and
0. = 8,1+ (1/c)(d — gpX,"T)
+ (1/c2)[f + gyn(X, Xy — 2%2)),
0pa ™ — &gn— (1/c)(d — gpX, "' 1)
— (1/c2)[f + n(3%,2g, — %,°1)]. (4.9)
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The two remaining invariants are constrained to {,,=1
in the equations of motion. Note that there is an asym-
metry between a an b. This is due to the fact that 7, and
7, are playing different roles, as is obvious, for example,
in (4. 5) and (4. 6). The relative nonrelativistic velocity
v is defined by

V=X, X =g,(X, —X,). (4.10)
For the purpose of having a nonrelativistic limit which
yields velocity dependent potentials, it is convenient to
redefine some of the invariants so that at least one of
the leading terms depends on v. We achieve this by de-
fining

0, = c(0y, +0y5) =c(0, + 05,),

(4.11)
012 = &(0h4 — Tgp)-

O.= 03y —
From (4. 9), the behavior near the nonrelativistic limit is

o, =v'r + (n/c)[X, r — 3£, V2],

o_= 20+ (1/c)(X; + X,) T — 2g,d]. (4.12)
The specific assumptions under which we shall study the
nonrelativistic limit of our general theory are the
following:

The interaction function

F(p,813,073,051) (4.13)
and all its partial derivatives with respect to its four
invariant avguments,as specified in 4. 13), have a finite
nonrelativistic limit.

With this assumption we shall get nonrelativistic equa-
tions of motion with a potential U which depends only on
¥2 and r'v. If we want to obtain also a v2 dependence in
the potential, we must make the same assumptions but
replace the argument §,, by ¢2({,,-1). Such a change
further complicates the analysis of the limiting proce-
dure and teaches us nothing new. Therefore we shall not
consider it.

Since our formalism will give, in the limit, a Galilei in-
variant theory with a potential which depends on the
relative position and velocity of the two particles, we
summarize briefly, for comparison later, the equations
of motion and the conserved quantities for such a non-
relativistic theory. Starting from the Lagrangian

L= %(ml'le’ + myk2) — U(r2,r*v), (4. 14)
where
r=x,—X,, V=X,—X;, a=¥V, (4.15)
we obtain the equations of motion
d U
maia = — + .d—t_ gx— (4. 16)

or equivalently

oU 02U
mx =({2——2 r'v+
&aMa%s < r2 r2or-v

22U
r-v)2

(r-a— v2)> r,
gy =—8&y =1 (4.17)
The conserved total linear momentum and energy are

P = m X, + myX, (4.18)
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and
Lo . U
H=3(m,X§ + myx§)+ U~_<r'v.

v (4.19)

The conserved angular momentum is
L = Z;( m(¥ix] — wixi) + aiUv (xhxi — xixd)
20U [k, — 2 )ixd — (i, — )] ]). (4.20)

As regards the vector K, which is the generator of in-
finitesimal special Galilei transformations (boost), we
observe that such a transformation does not leave L
invariant:

L-L+ —(MX 5V), (4.21)

where

M=my +m,, MX=mx; +myx,,

OV being the infinitesimal change of frame velocity.
From (4. 21) one gets

aLt

= Pt— MX. (4. 22)

V. THE NONRELATIVISTIC LIMIT
A. The equations of motion

The equations of motion whose limit we are interested in
considering are those defined by Eq. (2. 5), except that,
instead of the invariant variables o, and 0,,, we use

o, and o_ defined in the previous section. The explicit
form of the derivatives of F that replace Egs. (2. 6) are

F . oF . ” oF x# + k‘i oF
axa“= Z(xa—x,,) §5+(xg—xb)a—o+ + £, — _?.,
o wp o H oF
35€ap=-c—2-F+E§( —Cab)a—fa—; (5. 1)

Xy [oF g, OF
+ [xa—xb)#—oab c] (aa + ca ao)'
A 2

In making the nonrelativistic limit we observe that the
equations of motion contain terms which diverge as c,
terms that remain finite, and terms which tend to zero.
We shall see that the leading divergent terms cancel in
the limit, getting therefore, well-defined nonrelativistic
equations. It is not necessary to analyze the limit of
both the zero component and the space component equa-
tions of motion (2. 5), (5. 1), since the condition X(7,)
X, (-r ) = 0 makes the zero component equations logi-
ca.lly dependent on the other three equations. After a
consistent limit is found for the space component equa-
tions of motion, it follows that the time component equa~
tions reduce to an identity. In fact this can be checked
explicitly.

We consider then, the space component equations.
Dropping the terms that tend to zero in the limit, we are
left with the equation

. . oF 2
=m X, + fdn[— Xy~ —gbr<r'xag,, + %)
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F _, o F ., °F 22F
302 ®apao. ¢ Ba2  ° * 3pdo,
. a2F 0 9 \ oF
—2x,0,8 — | + 2¢C dngr<0 —+g—-—>-—.
2 “abSa ap30‘+:| f [ ab p a P 30’+
(5.2)

All the terms in this equation have already been written
at their finite nonrelativistic limit, except for the last
integral on the right hand side, which diverges like c. In
Appendix B we analyze this term to show that there are
cancellations such that the coefficient of the leading
term is zero. We evaluate explicitly the finite order
contribution of this term. By making use of Eq. (B5) it is
possible to show that there is a cancellation between the
first term of the first integral on the right-hand side of
(5. 2) and the last term of the same integral. Taking
this into account and Eq. (B7), Eq. (5. 2) yields

oF 92F
gm X, =— <2fa—p dn— (v2 — r'a)fa—oz dn
+
L\ %F
+ 2(r V)fa%—ap dT’) r, (5. 3)

which coincides with the nonrelativistic Eq. (4. 17) for
particles interacting through a potential depending on the
relative position and velocity through r2 and r*v, pro-
vided we make the identification

Ux2,rv) = [F(n2 — 12,8, = L,v'r,2n)dn, (5.4)
where the nonrelativistic values of the invariants have
been explicitly written in F. This equation is the natural
generalization of the equations derived in Ref. 18 to in-
clude r*v dependence in the potential.

B. The linear momentum

To obtain the expression of P* that we must analyze,
Eq.(5.1) has to be replaced in Eq. (2. 8). Considering
first the limit of the space components, it is not difficult
to see that the double integral terms tend to zero like
¢! and that in the simple integral terms the only parts
that contribute are those corresponding to the deriva-
tive with respect to o,. There are two of these terms
which do not vanish, one for each value of the index a,
they are equal and of opposite sign. Therefore they
cancel and we obtain

P (5.5)

= PR — mlil + mzkz.
Concerning the component P9, the limit to study is that
of

H= POc —m,c2 —m,c2, (5.6)
which should be compared, in the nonrelativistic limit,
with the function H defined in (4. 19), U being given by
Eq.(5.4). Although this limit is not independent of the
previous one it is easy to obtain it directly. The simple
integral terms in (2. 8) apparently diverge like ¢ when
considering the limit of (5. 6). The divergencies, however,
cancel and the limit of each one of these two terms
yields

oF .
fd'f]F + &, fdnm v,'r (5.7)
and therefore the sum gives
oF _ .
2fdnF — [dn = v'r. (5.8)
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The double integral terms also contribute to the limit of
(5. 6). Defining

=—c2 [Par Marr 2E 4 c2 (Parr (Par 2F
B c sz dr; f_wdTl prgg t le dr] f_aod-r2 B’
(5.9)

and noticing that a derivative with respect to x,, = ¢f,;
is, in the limit, equal to a derivative with respect to ¢y,
we have

Bs—c [“dtjF —c [*dr}F, (5. 10)
Ty )
implying
BW® — _ [dnF. (5.11)

Putting these results together, it is clear that, in fact,
H as defined in Eq. (5. 6) tends to the Hamiltonian
(4. 19).

C. Angular momentum and boost

We now take into account the skew-symmetric angular
momentum tensor L#¥ of Eq.(2.9). Note that when
dealing with the L 9% components, the relevant quantity
which should go under the limit in the vector K of (4. 22)
is L% /c. From (2.19) it can easily be seen that in both
cases, i.e., L% and L%i/c, the term containing a double
integral on the right-hand side of that equation tends to
zero, and so it can be neglected. As concerns the simple
integral appearing in (2. 9), it is easily seen that it gives
a finite contribution to L%, while for L9¢/c it goes to
zero, owing to a cancellation which occurs between the
two terms of the integrand. The final results are

LY >Li = §;<m,(5c;xg — i) + [an 2 (wj — x;,x;;))
+

(5.12)
and

1

sL%-> Ki=2p (vl —tkl)=MX—Pt.  (5.13)

Using (5. 4), the expression (5. 12) coincides with the ex-
pression (4.20). Eq.(5.13) already coincides with (4. 22).

Therefore the theory has a consistent nonrelativistic
limit.
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APPENDIX A: LINEAR AND ANGULAR MOMENTUM
CONSERVATION

Here we shall briefly sketch the procedurel? to obtain
conservation laws from Poincaré invariance of the action
(2.1).

l. Linear momentum

We consider the infinitesimal transformation of the
action induced by the following variations:

5x:;l1 = axg = ¢k, 65{{ = 6x5 = O’ 5T1 = 61’2 = 0, (Al)

which correspond to an infinitesimal translation.

The variation of the action, which must vanish, is
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T TY aF aF
J:’: 0=c¢ ldT 2dT <——— +—>. AZ)
5 j;'{ 1 fTé 2 axl‘l 0% g, (
Using the identity
™ 7 0
L= -0 (43)
T =00 ~c0 T

and the equations of motion (2. 5), (A2) becomes
Z(m x#+cf d'r> @ {fTé,<fT{+f°°>
A T \"e 7
f <fr’ + f1>:| dTlde =0, (A4)
2

where, in the last term, we have used

oF oF

=TT AT
0xq, axz‘l

(A5)

which follows from translational invariance.

Now we use the identity

SRR ) = S (-0 = (2 - 4 L2):

1 2
(A6)
Equation (A4) then becomes

pel’ =0, (AT)

where P* is given by Eq. (2. 8).

Il. Angular momentum

The relations corresponding to (Al) in the case of a

homogeneous Lorentz transformation are

01, =0, €,=—¢€,,
(A8)
€,, being an arbitrary infinitesimal; the invariance of F

implies

oF oF oF . oF .

Bxy, 1T Ty, M T M T M
oF oF oF . oF
=— <ax2p x§ — axy x§ + akzﬂxé’ Y x5> (A9)

The vanishing of the variation of the action gives
W [ oF oF
f j":;’ <—ax—a“x}; —m}é’#)d‘rad‘fb

+ [ @F iy — 2E x“)dT drb] =0. (A10)

ap av

The use of the identity (A3) and of the equation of motion
in the first term yields

_ A 0 oF oF
¢ a§z I:fré <~oo + frb' )(axapx“ 0x,,
bta

fT"m d —— (xpx? — x¥xf)dT,
a

>d7 ar,

(I)F . oF

axa“ L ax x“)dT dar,

o0 4 d oF d oF
— [, dan [, dTa("f?Em*x#dT % >]=°-
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Integrating by parts the last term of (All) gives a
double integral whose integrand coincides with that of
the last but one term. Adding these two integrals we get
a double integral term with integration ranges on 7, and
T, that are equal to those of the first term of (A1l). At
this point we make use of the identity (A9), obtaining

aF "
—xh me,> d'rb:l

plmtiges — e e [l 2
wel(f 2= 11 8)

oF oF oF . oF . ”
X (22 xy — =k oSy — 2L g =
(axlu T, M T, T By xl) dTldeiI =0

which is
Luv |:’ = 0,
where LM is given by (2.9).

APPENDIX B: THE NONRELATIVISTIC LIMIT OF THE
LAST INTEGRAL IN EQ. (5.2)

To determine the nonrelativistic limit of the integral

x, (7 )] o 92F 92F
b1 7b ab 3pda, t &, 0,00,

T = 2¢ fd'r;[xa('ra)—

(Bl)
we use Egs.(2.5),(2.7), and the expansion
G(p, 845, 9,,0) = Gyp + INRAp + |NRA0 + |NRA0
(B2)

of any function of the invariants which will be used for
the derivatives of F appearing in (B1). The index NR,
which means that the value of the indicated functions
must be taken at the limit ¢ — @, will be dropped from
now on. In (B2) the quantities ap, Ao, and ao are given,
according to (4. 8) and (4. 12), by

Ap = (2n/c)(r X, + g,d),
a0, = (n/c)&, T — 38,v2),
ao = (1/e)[(x; + %) r — 2dg,].

(B3)

Evaluating explicitly the expression appearing in (B1)
and keeping both terms of order ¢ and terms which are
finite in the limit, we have

_ 3 [oF 1 foF aF
. d oF
+f7]d'f)x1d—n%;

oF

0%F
+2fd17[gbd g%, 1) apac} fdnxba , (B4)

where use has been made of the expansion

Lo a2 2 2)o[L(E o, + 2 o
dn ap o0 ily ap

2 2
+2n<aF p+————aF ac, + aFAa_)
op2 9pdo, apda

2 2
BBy B g BB
opdo do, 90 802

(BS)

The term
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¢ arF d oF

vanishes since F is identically zero for p > 0. Integra-
tion by parts transforms the second integral into

f d oF oF . (B6)

ndn X, Ea_q =— a—%xbdn.

Expressing explicitly the Ao, and Ap in the first integral
of (B4), some cancellations occur with the last integral,
so that the final and finite result is

92F
902

Tyr =T (®,'r — 3g,v?) [dn

2 . oF
+ 2rg,r'v fdn aao—af;) — X, fdn g, (BT)

which is used in Sec.V.
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We consider local energy operators 8 H, as perturbations of the P(¢), Hamiltonian. Our principal
result is the estimate 8 H,< C[H(g)— E(g)+1] where C is a constant independent of the space

cutoff g and E(g) is the infimum of the spectrum of H(g).

1. INTRODUCTION

We study perturbations of the Hamiltonian in two dimen-
sional models for quantum field theory. The Hamil-
tonian H is formally the sum of a free Hamiltonian H ,
and an interaction Hamiltonian H ; and may be expressed
as an integral over space of an energy density. In a
recent paper, J. Glimm and A. Jaffel proved that a cer-
tain class of perturbations 8H ; arising from local changes
in the interaction density produces only a finite shift

8F in the vacuum energy of the renormalized P(¢),
Hamiltonian. Later Guerra, Rosen and Simon? used
Nelson's symmetry argument to give an elementary
proof of this bound on 6F with further restrictions on

oH .

This paper studies perturbations 6H, of the total Hamil-
tonian arising from local changes in the free energy
density. We show that the resulting shift in the vacuum
energy remains finite for a class of such perturbations.
Our estimate combined with the methods of Ref. 3 should
be useful in establishing higher order estimates in
which powers of 6H, are dominated by powers of H. The
proof of our results relies on a simple extention of the
results of Ref. 1. Although the methods of Ref. 2 are
formally applicable, there appear to be technical diffi-
culties in treating the perturbations considered in this
paper.

2. NOTATION AND BASIC RESULTS
Let & denote the Fock space over LRY),F =23 ® F,,
where
Fo=C={CQ,), ¥, =® L2(R?)
1

and ®% denotes the n-fold symmetric tensor product.
Let

pik) = (k2 + m2)1/2 2.1
and let
_(ax o\
).L—-( dx2+mg> , (2.2)

so that 1 is convolution by the inverse Fourier trans-
form of the function ;(*). The free Hamiltonian for a
scalar boson of mass m, > 0 is given by the second
quantization of u. Thus,

Hy =dT (), (2.3)
where

dT(u) [ & =0
and

n
dr(u) } §, = 25 1, ,
i=1 ¢
and B, denotes the operator 1. acting on the variable x5
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In configuration space the time zero field is

o (f) = 2712[a*(u-1/2f) + a(u-1/2f)] (2.4)

and we let ¢ (x) = ¢(6,), where §, is the delta function
centered at x. By definition, for fe L2(R1) and Fe &,

la(IF), (%, ..., %, ) = nY2 [f(x)F(x, x,, . .

and a*(f) is the formal adjoint of a(f).

Let P be a positive polynomial and let g{x) be a mea-
surable function of compact support such that 0 < g < 1,
The spatially cutoff Hamiltonian is

s X, 1)dx

H(g)=H, +Hfg) =H, + [: P(p(x)): g(x)dx. (2.5)

More generally let w be an operator on L2(R1) satis-
fying the conditions

(A.1) w is self-adjoint and real in configuration space
and for some constant m > 0

0<m = w. (2.86)

(A.2) Let x; denote the characteristic function of
[¢,i + 1]. There exist constants M, such that for all
t=0:

Ixetox,ll = m,/Ui —jln + (el + 1), 2.7)

Let

Hylw) = dl(w) and H,(g) = Hy(w) + Hlg). (2.8)

The following results are know to hold for H,(g). (See
Refs.4-7). Fock space may be realized as L2(Q) where
@ is the maximal ideal space of the weak closure of the
algebra of operators generated by

{eiet: fe L2(R)}.

In this representation
(1) @4(g)=1 and H(g) is a multiplication operator.
Moreover,H, and e”“! belong to L?(Q) for all p < w.

(2) H/(g) is semibounded and essentially self-adjoint
onT(Hy) N LA(Q) for 2 < p < .

(3) e o @ g positively preserving for { = 0 and for
t >0and 1 <p <w there is a constant » < p such that
e ) jg bounded as an operator from L7(Q) to L?(Q).
(4) H,{(g) has a unique vacuum ,(g). As a function on
@ space Q(g) is positive and belongs to L?(Q) for all

p < ®. By definition £,(g) is the unique eigenvector
corresponding to the eigenvalue

E,(g) = inf spec H,(g). (2.9)
Results (1)-(4) follow from (A. 1) alone. We note that (2)
implies

Copyright © 1973 by the American Institute of Physics 823
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1 Hylw) <H, + const,
so that

IHy @)Y/2(H, — E, + 1)1/2] < w,
Hence

I[H,(g) — E1(g) + 1]-172a% (5)|
= [H,(g) — E4(g) + 1]-V/2[H (w) + 1]1/2]]
Hy(w) + 1]-1/2q% (1)

x|
= IS ,, (2.10)

where a® = a or a*.

The choice of @ is not uniquely determined by (1)-(4)
and for some purposes the maximum ideal space is
unnecessarily large. We may replace @ by $’(R1) so
that for fe S(R1), the operator ¢(f) = [¢ (x)Ax)dx be-
comes the multiplication operator

Flg)— g, f)F{g), qec $(R1),

The associated measure is Gaussian of covariance fu-1
and (1)-(4) are satisfied. See Ref. 5.

By the Feynman-Kac formula, there is a Gaussian mea-
sure dg on §'(R?) such that for 6, ¢ § = L[§'(R1)]

(Bl,e"‘H'(g) 6 = fﬁlVéTt92dq’ (2.11)

where
Vi = exp(— fot f: P(g(x, s)) :g(x)dxds)

and T*¢ is time translation. This result is implicit in
Nelson8 (see also Refs. 9-12),

Now we state the principal result of Ref. 1 on which our
estimates are based.

Let k be a function of compact support satisfying — 1 =<
h = 1, and suppose

0 = P(t)g(x),

2.12
0 < P(£)g(x) + Py (Eh(x) ( :

for all real £ and x. If degP = degP, but P = P,, we
also require that g is bounded away from zero in a
neighborhood of the support of z. Let

E(g,h) = infspec H(g) + [: P1[¢(x)]:h(x)dx.

Theorem 2.1: There exists a constant M independent
of g and 1 such that

|E(g) — E(g,n)| = MD, (2.13)
where

D = (diam supp &) + 1.

We generalize Theorem 2.1 as follows:

Theorem 2.2: Let w satisfy (A.1)-(A.2), Let P,
P.,g,h be as in (2.12). Then the conclusion of Theorem
(2. 1) holds, namely,

|E,(g) — E,(g,h)| = MD,
We prove this theorem in Sec.5 by noting the changes
required in the proof of Theorem 2. 1.
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3. STATEMENT OF MAIN THEOREM

Let 0 be a real symmetric operator defined on the do-
main of u and let ¢ satisfy the following conditions:

(B.1) w = p + o is self-adjoint on the domain of u and
for some constant m,

0<m=w. 3.1)
(B.2) There is a constant K such that
low -1l = &, llw-1ull = K. (3.2)

(B.3) 0 has compact support. By this we mean that there
is a function x € Cg such that

X g X=0. (3. 3)
We define 64, = dT'(0). Let H, and E, be given by
(2.8) and (2.9).
Theorem 3.1: Let o satisfy (B.1)-(B.3). Then
|E.(g)— E(g)l=C, (3.4)

where C depends only on the constants m, K, and x in
(3.1)-(3.3) and on P.

Theorem 3.2: For T < l,and{ € CJ

o==1efu,"¢ (3.5)
satisfies (B. 1)~(B. 3) provided ¢ € Cg’ and € is suffi-
ciently small.

The proof of this theorem is given in Sec.4. We set
N'r loc — dr(g“’xrt)'

Theorems 3.1 and 3. 2 imply that (Q(g), N, ,,.2(g)) is
bounded uniformly ing,0 =< g = 1. By a result of Glimm
and Jaffe,13 this implies that the generalized sequence
of vacuum states

vy =(Q(g), -Q(g)
is norm compact on restriction to each local algebra
A(0) = {expi[¢ (f1) + 7(f,)]: suppf; C O}".

Here O is a bounded open set in R1. Hence any limit
point of the generalized sequence v, is locally normal.
The previous norm compactness of Ref, 13 applied only
to the space averaged vacuums,

For any limit stated v of the generalized sequence {v,}
the GNS construction gives rise to a Hilbert space T,
and a representation of the algebra %(0) on §,. By
another result of Ref. 13, this representation of %(0) on
%, and the free representation of %(0) on § are uni-
tarily equivalent., However, the corresponding global
representations of the norm closure of the union

A={ U A(0)}
OcR!

are believed to be inequivalent.

4. ONE PARTICLE ESTIMATES

In this section we study operators w = p + 0. We show
that w satisfies (A. 1) and (A. 2). This will enable us
to use Theorem 2.2 in the proof of Theorem 3.1. To
derive our estimates we use properties (B.1)-(B. 3) for
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o, the Duhamel formula for the different of two semi-
groups, and the pseudolocal property of u.

The Duhamel formula is

t
etw=etu— [e-swoe (-duds (4.1)

and may be obtained by first differentiating and then
integrating the function

f(s) = g-sweg-(t-8)p

An operator D: § — § is said to be pseudolocal if for

f e 8,(Df) (+) is C*™ at x whenever f is C™ at x, Thus
D does not enlarge the singular support of a distribution
f. We note that if  and £ belong to C{° and if ¢ = 0
then nD¢ is infinitely smoothing.

To study the properties of a class of pseudodifferential
operators, let f (%) be a smooth function which for each
n = 0 satisfies a bound of the form

|Def@)| = C (k] + 1)n+a, 4.2)

Here C, and a are constants and D, = d/dk. Let 7, be
Cg functions supported in [ — 1,7 + 1] whose deriva-
tives D n; are bounded uniformly in ¢ for fixed N. We
define C, to be convolution by f, the inverse Fourier
transform of f.

Lemma 4.1: Let f satisfy (4.2). Givenn and p = 0
and 77; as above, there exists a constant C, , such that

lwen,C mupl < c, (i —jl+ 1)=,
provided n;n; = 0.

Proof: From (4.2) we see that for each p and for »
sufficiently large,

[GR)PDZf]" € L2,
Since
[(k)2DEf]” = D, ?[Gk)*f] c L2,
we have for x bounded away from zero and for all »
D270 = ¢,/ xlm,
Thus the distribution
Glx,y) = n, &) flx—y)nly)
belongs to Cg and
lwenCmurl = max constD7D 3G (x,y)ll ,
=C, (i —jl+ 1)=.

See Ref. 14 for a systematic treatment of pseudo-
differential operators.

Lemma 4.2: There are constants a(r, ) such that
for real x,y, 7,k andy > 0,k = 0,

sup, ., x7e* < a(7,k)e"*¥(1 + y-7).

Remark: The function f(k) = e-tlu(k)-m/2) gatisfies
(4. 2) uniformly in ¢ = 0; consequently, 1 satisfies (A. 2)
[while (A. 1) for u is obvious].

Lemma 4.3: Let A and B be self-adjoint operators
such that
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0=<A=<B.
Thenfor0<71=<1
AT < BT,
(See Ref, 15)

Theorem 4.1: Let o satisfy (B.1)-(B.3). Then
w = u + o satisfies (A. 1) and (A. 2).

Proof: (A.1) follows from (B. 1) together with the
assumption that ¢ is real. We now verify (A.2). We
apply (4.1) to e-fw. The first term resulting from (4.1)
is

e-th = g-t{u-m/2)p-t m/2

and the required bound (A. 2) follows from Lemma 4.1
with

f(B) = e-tlu®)-m/2]
If both n;x * 0 and n, x = 0, we have |i — 471 =0(1) and
the required bound follows from 3.1, Thus without loss
of generality we assume that 0(1)|j|= || and 5,y = O,
The norm of the second term resulting from (4.1) is
dominated by

t
j;)ds”nie—swo'xe‘(t—s)pnj”
¢
= [, dsln,ese |l o1l luye-Ct=2un ||

By Lemma 4. 1 the last factor is bounded by

C, le-(t—s) m/2(|] |+ 1),

The first two factors are bounded by e-s” and K + 1,
respectively. These bounds yield the theorem.

The following estimate will be useful in Sec. 6.

Proposition 4. 1: Suppose that n,x = 0. For each
real p, there is a constant C), such thatfor all t,,f, = 0.

lut/2ge™* e “uTnuell < (che™ ™2)/(li] + 1)3.
Proof: We apply (4.1) to e~*w, As in the proof of
Theorem 4. 1, the required bound holds for the first
term resulting from (4.1). The second term is bounded
by
b2 ~b g -sw | -1 -(t,~8dpy T p
fo dsllp¥2ye™ e ™} o™ | luxe "2 7% #u' u?ll.

Applying (3.2) and Lemma (4. 1), we bound the last two
factors by

(& +1)Cg (il + 1)-3¢ 2792,
For the first factor we write
pl/2y = xpl/2 + [u1/2 4],
Since [111/2, x] is a bounded operator,
M 1/2xe"1“ Pl
< const{llu1/2e-sf + [le-s¢|},

Lemmas 4.2 and 4. 3 combined with (3. 2) and the spec-

‘tral theorem show that

lul/2e-sv| < const (1 + s-1/2)g-sm,
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After performing the s integration, the proof follows.

We conclude this section with some elementary esti-
mates needed to establish properties (B. 1)-(B. 3) for
o=1tu,t.

Proof of Theorem 3.2: The operator o is easily
seen to be real and symmetric on ®(u). Since

lgugu-1l < g2l + Mgfu, glu-tl (4.3)

is finite for smooth §{, €uf is a small perturbation of
i in the sense of Kato; consequently, w is self-adjoint
and (3. 1) holds. Condition (B. 3) is clearly satisfied,
hence it remains to establish (B.2). The bound

lwp-1ll = K is immediate from (4. 3). The bound [lpw-1]
= K follows from

p2 =2 + etul)?
or

+ 2e(ulul + Culu) = u? + 2(efuf)?.

Thus we need only show that for € sufficiently small
+ 2e{ulul + Culu) = u?,

but this is immediate from (4. 3).

5. THE PULL THROUGH FORMULA

To prove Theorem 2.2, we reformulate and justify the
pull through formula which generates the graph expan-
sion of Ref. 1. After making a few comments on condi-
tion (A. 2), the rest of the proof of Theorem 2. 2 follows
exactly as in Ref. 1.

We note that by using (A. 2) in place of Lemma 3.1.2

of Ref. 1, the exponential bound ye‘(m*f)d in (3.2.3)
may be replaced by yj (d + 1)-¥ for large N. Thus ], in
(2.3.3) of Ref. 1 now equals yj (@ + 1)-¥/4, This is
sufficient to control the combinatoric factors of Ref. 1,
Hence Proposition 3. 3.1 of Ref. 1 remains valid under
the conditions of Theorem 2. 2.

Let f € L2(R2). Thenfort >0

a(fle”™ = e a(f ) — fot e a(r ), Hi)le 9 Nds

= e'mla(f,) — fote'SHIP’se'“'S)Hlds, (5.1)
where
f, = e sef (5.2)
and
P, = [: P'(¢(x)): g(x)(n-1/2f Y x)dx. (5.3)

In (5. 3) P’ denotes the derivative P.

Equation (5. 1) may be derived by first differentiating
and then integrating from s = 0 to s = ¢, the function

Bls) = e—sHla(fs)e—(t—s)Hl.

To justify this argument we first note that B(s) is norm
differentiable for 0 < s < ¢ and its derivative is easily

seen to be the integrand in (5.1). The following lemma
shows that B’(s) is bounded in norm for 0 < s < ¢.

Lemma 5.1: Let F,(¢) be functions of ¢ which belong
to L?(Q) for all p < w0, Then for ¢ > 0

_slHlF1(¢)e—(sz _SI)H1F2(¢) .. .e—(t—sm)Hl“ (5. 4)

lle
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is bounded uniformly in s;, for s; in the sector 0 =< s,
< e-+=<§;=8;,, =!I Here the norm is the opera-
tor norm on §.

Proof: By the Feynman-Kac formula (2. 11) and the
Holder inequality, we can bound (5. 4) by

sup,,ei Hy =1 “91(Tt92)”p]”V6 HimTSiFi”pz s (5 5)

where pi! + p3l = 1, Another application of the Holder
inequality bounds the second factor by a constant in-
dependent of s;. [Note: for » < w, by (2.11), [Vv§l, =
(Qqe 0 ™ )1/7 < w]. We bound the first factor
of (5.5)

(071,670 g,") /01 < constllo, I 10,1,
by property (3) of Sec. 2.

By (2.10) and Lemma 5.1, (5. 1) holds as an identity of
bounded operators defined on the domain D{a(f,)].

More generally, let R(¢) and R (¢) be polynomials in ¢
with L2 kernels, Let ¢ > 0 and f ¢ L2. We assert that

rangeR (¢)e 1 ¢ Da(f)), (5.6)
rangea(f)e 1 c DAR(S)), (5.7)
and
a(f)R(¢)e 1 = R(¢p)e a( )

+ [alf), R — R@@) [ ¢ Ple " as  (5.8)

on the domain of a(f,). By Lemma 5.1 and the inclusions
(5.6) and (5.7) each term in (5. 8) is a bounded opera-
tor defined on Dla(f,)). Thus we may apply (5. 8) itera-
tively to the expression a(f)II (R icpe'ti”l)ﬂo which jus-
tifies the graph expansion of Ref. 1.

To establish (5. 6), we note that by (5. 1), (5. 8) holds
as a bilinear form on ® X D where D is the space of
vectors of finite particle number. Hence using (2. 10),
Lemma 5.1 and the fact that [a(f), R(¢)] is again a
polynomial in ¢, we have

-tH

(alfY*d,, R(@le  "1dy) < constlld, |l lid,]

tH |

for dq,d, € D. It follows that the range of R{p)e”
is contained in the domain of a(f)** = a(f). Here we
have used the fact that © is a core for a(f)*, the ad-
joint of a(f). This fact holds because the domain of
N(f) = a(f)*alf) is a core for a(f)* by Ref. 16, because
D is a core for N(f) and because lla(f)*¥| = N(F)1/2
vl for ¢ € ©. Hence (5.6) follows. The inclusion (5. 7)
follows from (5.1) and Lemma 5.1, Equation (5.8) is a
consequence of (5.1), (5.6) and (5. 7).

6. PROOF OF THEOREM 3.1

Before beginning the proof of Theorem 3.1 we make
two simplifying assumptions. By Theorems 2.2 and
4.1, we can assume that g(x) vanishes in a neighborhood
of the support of 0. This will enable us to control the
singularities arising from ¢. We may also assume that

0 < E(g)— Eq(g). (6.1)

If the reverse inequality 0 < £,(g) — E(g) holds, we
interchange the roles of H and H, in the following proof.

The proof of Theorem 3.1 relies on Theorem 2. 2, the
pull through formula (5. 1), and the Duhamel formula
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1
e_HI:e—H'—j(; e s (6.2)

Let T be a large positive number to be specified later.
We apply (6. 2) to the factor e ! below:

sH e 9 M gs,

-(27+1)H -TH, -H, -TH
e TOH) _ o TH ,oH - TH,
-H_-TH,

=e le e

(l—s)Hle—TH]ds. (6.3)

- sH -
— fo e SH ge
Next we want to pull through the annihilation and crea-
tion operators of
0H, =dT'(0) = fa*(x)a(y)o(x,y)dxdy
in (6. 3) using (5. 1) and its adjoint. Suppose ¢ is
Hilbert—Schmidt. After expressing ¢ in the form

G(x,y) = Zijdijgi(x)gj(y),

[|giHL2 =< 1, we apply (5.1) to obtain a new expression

for the integrated term of (6.3). In general, we appro-
ximate ¢ by the Hilbert—Schmidt operator

e = X e Hoe Tty
and set 6H . = dT'(s,). After applying (5.1) to 8H, in
(6. 3), it may be shown that the limit as € —» 0 is the
expression obtained by formal application of (5.1). In

order to identify this expression with the last term in
(6. 3), we show that

fo 1e T

tends weakly to 0 as € —» 0. Since

-(1-8)H TH
(1-5) re

S (6H y — 0H e ids

6H, = const Hy= const(H, — E, + 1),
if suffices to show

(Hy +1)2/2(6H, — 6H J(H, + 1)1/2

tends weakly to zero on a dense set of vectors of finite
particle number. This follows from the strong con-
tinuity of e-<¢,

Application of (5.1) and its adjoint to the integrand in
(6. 3) produces four terms. It is convenient to express
each of these terms as a sum of local terms, Let 7;
and ¢, belong to CF (i — 1,7 + 1) and satisfy

gn,=mn; and Zn, =1 (6.4)

13 )

As in Sec.4 we require the derivatives DY of n, and £,
to be bounded uniformly in ; for fixed N.

We write the term with no contractions in the form

f fw —sHe—(T+1-s)Hla(ij)
X Ko, j, %,3) dxdyds,  (6.5)
where
Koli,j) = nie-(T—l)we—suo-e—(T—s)wnj (6.6)
and
Fix(+) = £;(0)e0,](-). 6.7)

Two terms have just one contraction, The term in
which only the operator a contracts may be expressed
as
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Sz, ja*(f)e T e e 2 1Py(y)
xe’(T*l‘s'sz)HlKl(i,j,x,y)dxdydsdsz, (6.8)
where
K1G,0) = me” TP Yoo 2y o ut (6.9)

and

= [: P(¢(2): g(2)§ (@) 574 (x — 2)dz.  (6.10)
Here we define u7(x) to be the Fourier transform of

17 (k) and we choose ¢ to be a smooth function such that
$x = 0 and {g = g. The term in which only the operator
a* contracts is similar. We write it as a sum of two
terms (contraction to e-s# or to e_ml) with kernels
K,(i,7) and K4 (G, j) replacing K, above,

We also write the term in which both a and a* contract
as a sum of two terms. The term in which a* contracts
to e-sf is

fz;i je—THle—(s-sl)HP,i(x)e—slHe-s

~(T+1-5-s,)H

2H1p;_(y)

X e K4, j,%,y)dxdy dsydsyds, (6.11)
where
K3G,7) = n®/4en u % Mo e oy 2y uS1 (6.12)
The term in which g* contracts to e” "1 is

fzije—(T—sl) HlP,i(x)e—slHle—sHe—szHIP}(y)e-(T+1—s—s2)H]
x K4, 7, %,y)dxdy ds, ds yds,
where

-slwe—su 5/4.

. - -1
K40, ) = ud/4¢n, u-1/2 oe 2% /ztn,-u

We estimate each of these terms in norm. For the
factors a(f;, ) and a*(f, ) we use the g dependent bound
(2.10). We note that lIf“r )l is bounded uniformly in

x and ¢ and vanishes for |x —il= 2,

The following proposition gives a g independent bound
on Pj(x).

Proposition 6. 1: Let P)(x) be defined by (6. 10).
There exists a constant independent of g, x, and ¢ such
that

I[H1(g) — E,(g) + 1]-1/2P}()[H ,(g) — E,(g) + 1]-1/2]

< const(l + i —x|)1 (6.13)

Remark: The L2 norm of the left side of (6.13) as a
function of x is bounded uniformly in i, Note that the
same bound holds with # replacing H,.

Proposition 6.2: LetK beoneof K ,Kj, o =1,2,3,
B = 2,3. Then there exists a constant independent of g
such that

&G, )| < const(lil + || + 1)-3e-mS, (6.14)

where S = s; + s, if o or g = 3,and S = T otherwise.
Here the norm denotes the operator norm on L2(R1).

We postpone the proof of the two propositions and com-
plete the proof of Theorem 3.1 The spectral theorem
combined with Lemma 4. 2 implies

I[H, — B, (g) + 1]-1/2¢7H] < 0(1 + +71/2)e 7518,
(6.15)
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To apply Lemma 4.2 in (6. 15), we write

et = e tHE(8) +1] -t E (2)-1] )
Combining (2. 10) and (6. 15), we bound (6. 5) by

_ Y _p _(1-
C(g)2e 2TEIL e SEe a S)Elds const E ”Ko(zaj)“'
i,j

Here we have used the fact that the L2 norm of |f,, ()l
as a function of x is uniformly bounded in 7 and so

6.16)

SUfi (K, G, 4, %95, (- )ldxdy < constllKy(, ).

From (6.1) we have

-E -E
e '—e " s (1-5)5, -E
E—E, -_foe e ds =e ™, 6.17)
Hence by Proposition 6. 2, we can bound (6. 5) by
constC(g)ze'(ZT+ DE ,-mT (6.18)

Similarly, after applying Propositions 6.1 and 6. 2 and
(6. 15), we bound (6,11) by

E E

2TE e ' —e
C.e ]TI?’
where C, is independent of g. We have used
t
f (¢ — s)"1/25-1/24¢
0

as uniformly bounded for ¢ = 0. Bounds on the other
terms follow similarly, Moreover, using (6. 3) these
bounds may be combined to give us.an estimate of the
form

-2TE, -B -2TH, -E -Tm -2TE, -E
e le*1<e¢ le™ + constC(g)2e " " e lg™™1
-E -&
-278, ¢ !—e
+ 1=
C,e E—E,

We cancel the common factor of e? TE‘, and let T — o,
Suppose that |E; — E| is greater than 2C,. (I not then
we have the desired bound.) Hence we have

efr<e €+ 1/2e75
or

1/2¢ 51 <75,
This bound together with (6. 1) completes the proof of
Theorem 3.1,

Proof of Proposition 6.1: We observe the function

hi(z) = #'5/4(96 - Z)gi(z)

has compact support and is bounded in the sup norm by
const(|x — i| + 1)-1, (See the proof of Lemma 4.1). Let
P, = P’, Since degP, < degP, there is a constant such
for real ¢,z,and ¢
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0 =< P(t)g(z2) £ Py(¢)n (2)g(2) + const,

Hence by Theorem 2.2 and a simple scaling argument
we have

+ Pi{x) = const(lx —i| + 1)-1[H,(g) — E,(g) + 1]
or

I(H,(g) — E,(g) + 1)1/2PY(x)(H ,(g)

— E,(g) + 1)-1/2] < —COBSt

lx—il+1°
Proof of Proposition 6.2: We dominate K, (7, 7) by
”nie-(T-l)we‘SPXul/ZH ”u-l/zc,-u-l/z” [|u1/2Xe-(T-s)wni]|_

The middle factor is bounded by (3. 2) and Lemma 4. 3.
When 1y = 0, we apply Proposition 4. 1 to the other two
factors. In applying Proposition 4.1 to the last factor,
weset 7=0, t; =0,and t, = (T — s). For the first
factor we set 7=0, t; =s,and {, =T — 1, nx =0
we bound these factors using (3. 2) and Lemmas 4.2 and
4.3 by a constant.

Similarly, we bound the remaining K(, 7) by a product
of three factors and apply Proposition 4. 1.

ACKNOWLEDGMENTS

I am happy to thank Professor James Glimm for pro-
posing the problem and providing encouragement and
guidance throughout the course of this work. I also
thank Jon Dimock for helpful conversations,

*Supported in part by the National Science Foundation Grant
NSF-GP-24003

'J. Glimm and A. Jaffe, J. Math. Phys. 10, 1568 (1972).

2F. Guerra, L. Rosen, and B. Simon, Commun. Math. Phys. 27, 19
(1972).

3L. Rosen, Commun. Pure Appl. Math. 24, 415 (1971).

4J. Glimm and A. Jaffe, “Quantum field models” in Statistical
mechanics and quantum field theory edited by C. de Witt and R.
Stora (Gordon and Breach, New York, 1971).

5J. Glimm and A. Jaffe, “Boson quantum field models” in Mathematics
of Contemporary Physics, edited by R. Streater (Academic, New
York, to appear).

°I. Segal, I. Ann. Math. 92, 462 (1970).

B. Simon and R. Hoegh-Krohn, J. Funct. Anal. 9, 121 (1972).

8E. Nelson, “Quantum fields and Markov fields,” Proc. A.M.S. summer
conference, 1971.

SE. Nelson, “Construction of quantum fields from Markoff fields,”
preprint.

'°F, Nelson, “The free Markoff field,” preprint.

UIT. Spencer, “Perturbation of the P(¢$), Hamiltonian,” thesis, New
York Univeristy, 1972.

12J, Feldman, “A relativisitic Feynman—Kac formula,” preprint.

3. Glimm and A. Jaffe, Acta Math. 125, 203 (1970).

L. Nirenberg, “Pseudo differential operators” in Proceedings of
symposia in pure mathematics (American Mathematical Society,
Providence, Rhode Island, 1970), Vol. XVL

51, Nirenberg, “Functional analysis,” lecture notes, New York
University, 1961.

1T, Kato, Perturbation theory for linear operators (Springer-Verlag,
New York, 1966).
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The results of T. Kato are expanded by generalizing the relative bound condition on the perturbation
to determine the domain of powers of the perturbed operator and by exhibiting some useful relative
bounds between the unperturbed operator, the perturbed operator, and the perturbation.

In applying the perturbation theory of T.Kato to physical
models,! two natural generalizations of Kato's result
arise:

(i) a set of relative bounds between the unperturbed
operator, the perturbed operator, and the perturbation;
(ii) further results on the domain of the perturbed
operator.

In this paper we present these results in a general form.
Kato has proven? that under the conditions

(i) A is self-adjoint, B symmetric,

(i) D(B) 2 D(4),

(iii) there exist constants ¢,8, 0= a <1, 0= g8 <ww,
such that for all y in D(A4),

IBxll = allaxll + glixf,

then A + B is self-adjoint and D(A + B) = D(A).
Furthermore, if A is semibounded, then so is A + B.

We shall refer to (i), (i), (iii) collectively as (K) or alter-
natively we shall say that B is a Kato perturbation of A.
One of the useful aspects of the above is that the in-
equality (iii) is required on a presumably known domain
D(A).

We next observe that if A, B are any operators satisfying
B:D(A"”) = D(A»-1) forn = 1,2, - - + N, then, by induction,
D((A + B)m) 2 D(A™) form = 1,2,-+-,N.,3 This domain
mapping condition will be referred to as (D).

Kato's theorem is easily extended as follows: We notice
that any operator of the form A/, A real, is a Kato per-
turbation of any self-adjoint operator. Let A, B satisfy
(K), with A bounded below. Then there exist constants
6,p such that A + p/, A + B + §I are self-adjoint,
strictly positive, and have domains equal to D(A4). With-
out loss of generality, we may then assume 4, A + B
are positive,

Corollary 1: Let A, B satisfy condition (K) for some
a,B. Let A be positive, and choose §, p positive with
p > B(1 — a)1l. Then there exist positive constants
¥1s Y2 ¥3» ¥4 Such that, for all x in D(A),

(1) 1Bxll =y, 14 + pnxl,

(i) (B + 6)xll = y,ll(4 + pI)x,
(iii) (A + pD)xll = y3ll(A + B + pI)xll,
(iv) (A + B + pz)xlfs yall(A + pI)x

Proof: Let x € D(A). Then by the positivity of 4, we
have [[{(4 + pI)xll = plixll, (4 + pI)xll = llAxll. There-
fore, |Bxll = allAxll + Blixll = (a + 8/p)I(A + pI)xll,
proving (i). Proving (ii), (iv) is similar. For (iii) we
have
A+ pD)xll = (4 + pI + B — B)yll

= (A + pI + B)xll + Bl
= (A + p1+ B)xll + (e + B/p) (A + pD)x
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Since p > B(1 — a)°1, it follows that o + 8/p < 1 so that
result (iii) holds by choosing y, = [1 — a — 8/p]}1.

We notice that“A = 0 implies A7 = 0 for allm > ("
admits the following generalization:

Lemma 1: Let A be a positive, self-adjoint operator.
Let 0 = n <m and € > 0, Then there exists b finite,
such that on D(A™), A” < €A™ + bl

Proof: Letting {E,} denote the spectral family for

0
A we have A" = fo A"dE,. Furthermore, for any A, > 0,

Ao g «© -
J, CAndEy = A, “dE\ = A3 [ dE, = g,
o0 0 ox©
onszx = f"o)\mhn-MdE)‘ = Ag'mf}\o)\de)\
o0
-m — -mAm
= Ag™ [ ATAE) = AgTmA™.
Choosing A, by € = A3~™ and choosing b = \§ = en/in-m),
we obtain
A
Ar = f() o)\ndEA + f:))\”dEX = €A™ + bl,
0

We will use multiple commutator notation defined by
(adA)0(B) = B, (ad A)*(B) = [A, (adA)"-1(B)]~ defined on
the domain of the right-hand side, where ~ denotes the
smallest closed extension.

Lemma 2: Let A, B be linear operators such that
domain mapping condition (D) holds for some N, Then
for all x in D(Am+1), 1 =m < N — 1, we have

m
A"By = >

P’ @) (ad A)p(B)Am-Py,

Proof: By condition (D), all operators are well
defined. The combinatorial factors are then obtained by
induction using the known result

a\ a _ (a + 1> i
b b—1 b
We may now state

Corollary 2: Let A be self-adjoint., Let B be sym-
metric and satisfy .
(iy B:D{A»)-» DA 1l)forn=1,2,-++ N,
(ii) forallp =0,1,2,--+, N— 1, there exist positive
constants ¢, »d, such that for all x in D(A#"1),

l(adA)? (B)xll = c llA?+1x]| + d,lixll

with
N-1 I /s
MF<2 whereE =1+ Z}(’)cp.
i=0 p=0\p

Then A + B is self-adjoint and D(A™) = D((A + B)") for
m=1,2,--- N.

Copyright © 1973 by the American Institute of Physics 829
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Proof: F;> F;_; since (J)> (]p'l). Hence Fy = 1 +
¢o < 2 or ¢y < 1. From (i) for the case » = 1 we have
D(B) 2 D(A) so that A + B is self-adjoint with D(A) =
D(A + B) by Kato's theorem. Thus A®, (A + B)" are
self-adjoint for all » and, by (i), D((A + B)*) 2 D(A") for
n=1,2,---, N, We shall show that the remainders R, =
(A + B)" — A7 are Kato perturbations of A for n = 2,3,
+++,Nas well, Since D(R,) = D((A + B)" — A*) = D(A"),
R, is symmetric, It remains to prove that for each n =
2,---, N, there exist constants a,,8, with0= ¢, <1,
0= ﬁlgln <« such that, for all x in D(A*), |R, x| = a,lA]
+ B,lix

We show the inequality to hold for alln=1,2,++- N
with the choice &, = ([1%2§ F)) — 1 + €,, where ¢, > 0
may be chosen arbitrarily small, The inequality is true
for n =1 with @, = ¢y = F, — 1, Assume that the re-
sult is true for n =m < N. Then, for x in D(Am+1),

"Rm+1X“ = ”[(A + B)m+1 _Am+1]x“
= [[AmB + R(A + B)Ix|
< |amBx| + a, A™A + B)xll + 8,4 + B)x|
= (1+a,)lAmBx| + a,lAm2y]]
+ B llAx | + 8,1 Bx|

Consider

1A
Ms

lamBy | (’”) l(adA)p(B)Am-2y |

p

H
o

b

m

A

cllam+1y | + a|Am-ex|.
Z (7)alamaxi+ 3 (5)alansx

Then

IA

IRl = [0+ ) 3 (7) & + o) H4m1x

n m—

+ BallAx |l + B, collAxll + B, dollxll.

By Lemma 1 and the positivity of A2, all terms after the
first may be bounded by

ellAm 1yl + b, x| where e > 0 is arbitrary.

Therefore,
“Rm+1X|| = (:E + 1+ C!m) E <m> < + am] “Am*l)(“
p=0\P
+ bm+1”)(”,
and

= (m
€+(1+am)§o(p>cp+am

~e—1+F, +F,a,

i

m-1
e—1+Fm+Fm<]_r=10FJ‘.—1+em>
m
‘l'lo F;—1+ (e +€,F)
j=

proving the result.
This corollary is augmented by the following:

(i) Since R,, is a Kato perturbation of A™, the esti-
mates of Corollary 1 apply with A replaced by A™ and
B by R, whenever A™ is semibounded.
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(ii) I the c, may be chosen arbitrarily small for p =
0,1,2,---, then the result holds for arbitrarily large N,
and hence the C_ domains coincide:

C A)=C A + B).
(iii) By Lemma 1, the condition
I adA) (B)x |l < e,llar1-sx || + g lIxlI,

for6 >0, e » & finite, allows one to choose ¢, arbi-
trarily smaf .

(iv) The following lemmas indicate that in some
cases it suffices to know the assumptions of corollary 2
on a smaller domain:

Lemma 3: Let A, B be closed, A-! bounded. Then
A"B is closed for n = 0,1,2,-+-,

Proof: Pick a sequence {u,} € D(A*B) such that
u, > u, A®Bu,— x in ¥. Then since A~# is bounded,
Bu, = A""A*"Bu,— A™"x. Since B is closed, u € D(B)
and A%y = Bu;i.e.,x = A*Bu,

Lemma 4: Let A, B be closed, A-1 closed and bound-
ed, and let (ad A)*(B) be A#*1-bounded for n = 0,1,+--,
N. Then there exists a core for A»*L,D,, with BD; C
D(A") if and only if BD(A"*1) € D(A").

Proof: The indirect proof is trivial, Assume such a
D, exists. Letu € D(An*1). Then there exists {u,} C D,
such thatw, - u, A#*ly, — An*ly, Since A"l is Hound-
ed, it follows that A™u, = Amy for allm =0, 1,...,
n+ 1. On D, we have

n
ArBu, = qu)(yZ) (adA)m(B)Ar-™u,, .
Using the A™*1 bounds, the right-hand side is seen to
converge. Since A»B is closed it follows thatu €
D(A"B),i.e. Bu € D(A").,

Lemma 5: Let A be normal, Let A"B be closed and
(adA)=(B) be A#*1-bounded for n = 0,1,..., N. Then
there exists a core for A**1, D, with BD, < D(A") if and
only if BD(A"*1) C D(A").

The proof is similar to the previous ones, but we use
Lemma 1 to obtain convergence of A"‘up from that of
Amly, m=0,1,...,n+ 1.
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It is shown that the so-called “moment condition” imposed by R. K. Sachs and A. M. Wolfe in
their general treatment of the pertrubation problem for £ =0 Robertson—-Walker universes both
exclude physically reasonable solutions and are unnecessary. This restriction is removed by
establishing that the Sachs-Wolfe solution gives the most general C* solution provided the

potentials are Ceo.

. INTRODUCTION

In 1966, R. K. Sachs and A. M. Wolfe presented an elegant
treatment of the perturbations of %z = 0, Robertson-
Walker universes filled with either pure radiation or
incoherent matter.l Notably, the components of the per-
turbed metric were expressed in terms of a 'small’
number of potentials, and a physical interpretation of
each was given. The Fourier transformation method
used by Sachs and Wolfe required the class of functions
eligible for representing the components of the per-
turbed metric to be restricted by certain moment con-
ditions. We wish to show that, in fact, the Sachs—Wolfe
solution contains all C*-perturbations, provided the
potentials are C™, A simple, physically reasonable ex-
ample shows that the moment conditions form an un-
desirable and, as our main theorem shows, unnecessary
restriction. Also, a shortening and simplification of the
proof is achieved by working in spacetime throughout.
We employ units in which ¢ = 8rG = 1. Latin indices
will run from 1 to 4, while Greek indices run from 1 to
3. A comma denotes partial differentiation, while a semi-
colon denotes covariant differentiation.

Il. THE SACHS-WOLFE PROCEDURE

To formulate the perturbation problem, we consider a
one-parameter family

gab(xc’ €)

of solutions to the Einstein equations with a perfect
fluid source,

Gg =— (p + plucu, + pog (1)

which coincides at € = 0 with the 2 = 0 Robertson—
Walker models. Then,

Z5(x¢,0) = a2(nn,, (2)
where 1, = diag(— 1,— 1,— 1, 1) and 7 is a time coor-
dinate with range 0 < n<{*°, scaled to have present value

unity. In the cases of incoherent matter and pure radia-
tion sources, we have, respectively,

bo: =p(e =0) = 0:

a=2n2/H, Py: =ple =0) = 3H2/7761

t=2n3/3H, pg=py/3:

a=1n/H, py=38H2/n%, t=n2/2H, &)
where

H:=(a/ayn=1
is the Hubble parameter now, ! is the cosmological pro-

per time, and the prime denotes differentiation with res-
pect to 7.
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The first order perturbations of this “background” are
defined as those elements of the one parameter family
“near” € = 0, in the sense

(%€, €) = g,,(x°,0) + 8g,,(x°, €), (4)
where
ag,,(xc,€)
8g(x¢,€): = e(—i—’—> .
de €=0Q

Because of (2), we write 6g,, in the form

0,5 = a2(n) hyy, (5
and employ comoving coordinates

ue =06 /a(n) <> G% =0, hy, =0. (6)

The coefficients %, then have indices raised and lower-
ed by 7,,.

The coordinates in the background metric are fixed up
to the Euclidean transformations

¥4 =x4, X=0x+4, (7a)
where
007 =1, O = const, d = const. (7o)

The remaining coordinate transformations
R4 =foxt, )

in the perturbed metric

b
X2 = x2 + €<_a-iﬂx__’.€_)) ,
de €=0

when restricted by the comoving coordinate conditions,
lead to changes in &, of the form

-~

hocB = huB + d(ot.ﬂ) + 2(a’/a2)bna6, (8a)

Boa = hoy + a6, 0, (8b)

where b and d, are arbitrary spatial functions of first
order in €.

The perturbed field equations are

8G%, =~ 8, 06G%, =0, 08G% =6%05P, (9)

where

9G4, (x¢, €)
5G4, = <__b___.) ,
de €=0

and Gab(xC, €) is the Einstein tensor associated with
2,,(x¢, €). The Sachs—Wolfe procedure for solving these

Copyright © 1973 by the American Institute of Physics 831



832 Paul C. White: C-perturbations of a cosmological model

equations utilized the flatness of the preferred timelike
three surfaces in the background to Fourier-transform
the unknown #_;:

hos(X, 1) = [ A3k et xR 4 (k, ),
hoa(x,m) = [ d3k e xRy (k,n).

The field equations then become a set of coupled, ordin-
ary differential equations for the coefficients &, and
hy4- 1f further regularity conditions (moment condi-
tions) are imposed on these coefficients, then the field
equations can be uniquely separated into parts longitu-
dinal or transverse with respect to k. Their solutions
can be expressed in terms of powers of  and spherical
Bessel functions of low order. Transforming these solu-
tions back to position space, and reducing the number of
arbitrary functions by means of the gauge freedom of
Egs. (8) yields the Sachs-Wolfe solution:

o o0 1 8<Da5> 2(8 v2>

by = =0: =— | —} — —_— —

0T ™ “® " nan\n 73 n
n2 a2

(Co o + (1~ g 57058)

Nos H? (64 3B
(10a)
D 8
Po=0p/3, 00 =0p/3: by = ;‘B — v )
n2 8 [E,4\ s OF
“Cos G+ 35 () -T2 5
72 2 <1 aE,a>
hoa=—V2,+— — \—
o4 o 4 an 772 an ’
3H2 3 3 [OE/3
P =—0 — [nz ——~< / n)} (10p)
nt an an \ n?

Here, the potentials A, B, and C, are functions of X, while
the potentials D, and E are functions of x and 7. They
are subject to the constraints

02

32
3-—-——V2>E=0, 10c
( - (10c)

where V2 is the Laplacian of Euclidean 3-space E3,

The ‘moment conditions’ which have been imposed on
the coefficients ,, and k,, in order to guarantee the
uniqueness of the splitting with respect to k require
representations of the form

b (k, MERS = k4f(k, 1), (11a)
o O, MEB = R2g, (K, 1), (11b)
e (k,n) = k4i(k, 1), (11c)
ok, MR = — ik2m (K, 1), (114)

where f,g,,7 and m are generalized functions, coinciding
with continuous ordinary functions in the neighborhood
of k = 0. All physically distinct, first order perturba-
tions of the given background model, Eqgs. (3), which
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obey the “moment conditions” are described by the
Sachs—~Wolfe solution. On the other hand, a straight-
forward calculation shows that (10) always give solu-
tions of the perturbation Eqgs. (9) irrespective of mo-
ment conditions, provided D, is C3, C, is C5, A and
B are C4,and E is C5. Among them are simple, physi-
cally acceptable solutions which fail to satisfy the
;rllorx)nent condition. As an example, we choose, in Egs.
0a),

D,y=0, C,=0,
and

(12a)

B(r) :BO J“)Td_’}_:g j(;r " 2dr" exp(— 1,;//702),
y’
2 =x2, +x,2 + 52, (12b)

and B, is a constant. The perturbed matter density then
has the form of a Gaussian

8p(r,n) = — (3H2B,/20n2) exp(— 72/742).
On the other hand, we readily find that

5 pons — VI 743 exp(— k2r,2/4)
B B 2(2n)2

(1 — n2k2/10),
so that from Eq. (11a)

Vi7y3 expl— k27,2/4) < 1 72 )
2(2m)2 R4 10r2/°

Clearly f(k, 1) is not continuous at 2 = 0, and so this

simple solution violates the moment conditions.

We shall show, in the following section, that in fact the
Sachs—-Wolfe solution (10) contains all C*®-solutions of
the perturbed field equations.

1l. AN ALTERNATE TREATMENT

Our procedure here will be first to integrate the field
equations directly, and then vigorously to employ the
gauge freedom in order to cast the results into the form
of the Sachs—Wolfe solution. It is well known (see, for
example, Synge?) that the field equations

Gey,+ Te, =0

in space-time (M4) are locally and equivalent to

Gy + Ty =0, (13a)

Ta,., =0 (13b)
in M4, together with

G4a+T4a=0 (130)

on S3, where S3 is a three-dimensional hypersurface
defined locally by

x4 = const
in coordinates chosen so that
g44 = 0.

With the metric written in the form of Eq. (4), the per-
turbed field Eqs. (9) can be rewritten as

8G, + 6T, = 0 (14a)
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and
8(Ta%;b): = (5T“b),b + g‘abcaTbc + gbcbﬁTac + 5rabc%‘bc

+ 808, Tee =0,  (14D)

GG4a +6T4, =0

on S3, where we shall use the perturbed perfect fluid
matter tensor

b — b __ b b + @y b,
6T« (6p + ap)gag épga gzbga + 2(0p g)bu %

Let us call any solution to the field equations which can
be represented by C* functions a C* solution. Then, in
order to show that the Sachs—Wolfe solution is the
general C* solution to Eqs. (14), we repeatedly use the
following important fact:

Lemma: If g is any C* function on E3, then there
exists a C* function f on E3 such that

VI i=—nf =g

This lemma is a special case of a theorem for more
general mth order differential operators in E#. For a
proof, see Friedman.3

We now state our main result in the form of a theorem:

Theorem: AllC*solutions to the perturbed field equa~
tions (14) can, modulo C* gauge transformations of the
type (8), be expressed in the form of the Sachs-Wolfe
solution, Egs. (10), with C* potentials A,B,C%,D*8 and
E.

Proof: 1f we solve Egs. (14a) for the second time deri-
vatives of the %_,, and then take the trace with respect
to 7,5, we find that in M4
h" = — 2(a’'/a)h’ + 24/ + d(a’/a)hd | + ZSW

+ $V2h — 3a26p, (15a)

where h: = n%%h,, = n*fh 4. Also, we find that the trace
free-part of the metric, $%;: = h %, — 3 6%k, satisfies
Sy = — 2(a’/a) S¥y + V28 + S, + S, b
—FoeSHy , +hot g g, @ — LR,
+ 2(a'/a) (k% 5 +hpy ) — 3 6%[5V2h

+ da'/fa)hie |, + 2040 ). (15b)

Similarly, we solve Eqgs. (14Db) for the first time deriva-
tives of hte,

h4% = (py + po) — 1(6p+@ —g’h‘la) — (@’/a)h4e, (15¢)
and dp,
6p’ =— 3(py + Po) k' — 3(a’/a)(8p + 6p). (15d)

The constraint equations on S3 are then found by expand-
ing Eqgs. (14c):

s“u.uu + %Vzh + 2(a’/a) (2h4"'u —h’) + 2a26p =0, (16a)
and
v2pda %h'a’ 4+ Sap'ul + h4u'“a

— [8(a’2/a2) — 4(a"/a)] k42 = 0. (16D)

It can readily be checked that Eqs. (10) give a particular
solution to the above field equations. It remains to show
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that in both cases (i.e., radiation and dust) Egs. (10) form
the most general C* solution to (15) and (16) modulo
gauge transformations. We shall integrate the equa-
tions directly, eliminating some functions of position
alone by means of gauge transformations. The details

of the procedure are tedious; however, enough of the
solution is presented here to make the procedure clear.
A. The case of incoherent matter

With p = §p = 0, the field equations reduce to
0

Sey =—(4/n) S¥, + V25, + Spp, ™ + 5% gy — Z 6ogSHY
TR g+ hgy @ — SR+ (4/n) (o4 5+ hgs )
— 5 0% (G V2R + (8/n)h4 | + 204 ), (17a)

h"=— (4/m)h' + 2R 7 + (8/n)h4 , + 3SW , + 5V 2h,

(17b)
k4o’ = — (2/n)hde, (17¢)
6p’ =— 3 (H/m8) k' — (6/7) bp, (179

in M4, and

Suv,, + 5V2h + (4/1) (2h% , — k') + (4n4/H2)0p = 0,
) ! (182)

V2pde + 3R + S+ h4 @ — (24/n2)h4e = 0, (18D)

on S3. The allowed gauge transformations are

§a8 =Sup * 4~ 3 Napd 4> (19a)
h=h+de  + (6H/n3)b, (19b)
By =hyo + H/202)b, o (19¢)

Integration of Eq.(17¢) immediately yields
hi(x, ) = — (2/n2)F «(x),

where the sign and numerical coefficients are chosen
for convenience. We can, however, always find a gauge
in which k4« has the representation

h4(x, ) = — (2/92) V2C %(x) (20a)
with
(20Db)
For,under the gauge transformations of Egs. (19¢),
h4(x,m) = hto(x,n) + (H/2n2)b(x)-=
= (2/n?)[F «(x) — (H/4) b(x) 2],

and given F %(Xx), there exists a b(x) and C*(x) such that

v2Ce=Fo— (H/4)b%, Co _ =0.
To see this, choose g%(x) so that V2¢g« = F«, This is
possible by the above lemma. Then define e(x) by
V2¢ =g .. It follows that

V2eg:a + Fa=V2(e.® + g,

Then, taking C* = g* + e:*and b = — (4/H)V2e we
accomplish the objective. Clearly, in this gauge,

h4c a= 0.
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If we now take the divergence of Eq.(18b), we find
(Sev ,, +35v2h) = 0.
So, defining B(x) by
V2B = $SM  + 3V,
it follows from Eq. (17b)} that
(n%h' — $15V2B)’ = 0.
Thus, there exists an A(X) such that
V24 = 3(n*h’ — 159 2B).

Integration then gives

2
hmm=%wmm—mwwmm+an

The gauge transformation which would bring this result
into accord with Sachs~Wolfe also alters S#¥ , so we
first integrate Eq. (18b), obtaining

Sev | =(16/93)vV2C* — (2/n)V2V2Ce + (n2/15W 2B .o
— 5(v24.4/92) + Jo(x).

Now, the remaining gauge freedom allows us to alter
h(x,n) by

h(x,n) = h(x,n) + 2d* ,(x),
while at the same time changing S*¥ , by
Swr  =S#v  — V2dK + 3dY t.

It is possible to find a d* such that

h(x, ) = (n2/10)V2B(x) — (1/13) V2A(x) + 3B(x) (21)

and at the same time

Sav = (16/73)V2Ce— (2/n)V2v2Ca + (n2/15)V2B.«
—(2/3)(v24.2/p3) (22)

as follows. First write d¢# =u# + v* where ub = 0.
Then set

‘U“‘“ =3B -G

which always has a solution for v#. The lemma as-
sures the existence of a u# satisfying
V2uk =J¢ + V24 + 5 (3B — G)H,

and this u# leads us to the required 4. Incidentally,
this gauge permits us to solve Eq.(18a) for 6p, giving

2
4 n? 5 n4

and a check with Eq. (17d) shows this result to be consis-
tant.

Finally, we must find the trace-free part of the metric
as a solution to

Sotﬁl/ + i SO‘B'— VZS"‘B = 2<§_v2 — l V2V2>(C“,B — CB.a)
n n n
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2
— _:_l. vaA Ba —_ L V2V2A5°‘a + - VZB,aB
n3 ' n3 10
+ 2 vV2y2B5« B.o Lpa y2
30 s —B% —30%VB.
We may easily construct, from Sachs—Wolfe, a particu-

lar solution §%,, compatible with Eq.(22) and the general
solution is then given by

Sor.B =grxﬂ + ‘Fqﬂ’
where %‘0“; satisfies

gaﬂn+ _é gaa' _VZgaB =0,

with

The general solution to this homogeneous equation can
be found by first writing

SaB _:1 i(paﬂ ,
0 nan\n

so that D28 satisfies

8
l_a_(DDa >=o,

non\ n
where
2
O: ==—a———V2.
an2

We must therefore have
OD*8(x, ) = nQ8(x)

for arbitrary spatial function Q#. However, the defin-
ing relation for D8 permits changes of the form

DoB(x,n) = DB(x, 1) + 1K*5(x),
and under such a change
QO De8 =D + [v2Keb,
Thus, by choosing K8 to satisfy
V2KeB = QuB,
we may always demand that D*8(x, n) be a solution of

OD«b =0,
with
D“ﬂ'a = 0.

(23a)

(23b)

Assembling the parts to the solution for S*8 we have

SaB =l i([)%)_ 2<_8__V_2> (Co:8 ‘q-(jﬁ.az).*_i’cds
nan\n UES | n3

2 2 V2A
+ (peep — 1= g.aBY — L pas 17_v23+33___>
<" 510 ) 3T (10 3
(24)
which brings the entire pressure-free solution into
accord with Sachs—Wolfe.
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B,. The case of radiation
If p =3P and 6p = 3 Op then the perturbed field equa-
0

tions become

S " =—(2/7)S%" + V25 + Sy, W + Sw
e L P L
+(2/MAot g + gy @) —§ 6% [5V2R

+ (4/mhde |+ 26 ], (25a)
R = (2/mR + 2R+ (4/m) % — (n2/H?) bp
+ 38w, +§V2h, (25b)
hée’ = (n4/12H2)5p @, (25¢)
op’ =— (2H2/n) R’ — (4/7)0p (25d)

in M4, together with

S, + 2v2p + (2/n) (2h% , —h') + (202/H?) 5p = 0,

(26a)
V2p4a —2p o 4 Saﬂ.u’ + h4#'"°‘ — (8/n2)hd4e =0, (26b)
on S3. Furthermore, the permissible gauge transfor-
mations are of the form

SoB = §aB 4 d(a.8) — & ncxadu'“, (27a)
h=h+av, +(6H/n2)b, (27b)
hod = pod 4 (H/n)b .. (27¢)
Integration of Eq.(25d) implies that
746p + 2H2h = L(x).
However, by integrating
de  =L/2H, (28)

we may always find a gauge in which
op(x,n) = — (2H2/n4) h(x, n). (29)

Now, guided solely by Sachs—-Wolfe, we represent
h(x, n) by

~_338 [20 LM)}
h(x,n) H on [77 377(772 an .

Clearly E(x,7n) is not unique, and i(X, 1) is not affected
by changes of the form

E(x,n) = E(x,1) + n3a(x) + n28(x) + y(x).

This nonuniqueness will be used, like the remaining
gauge freedom, to eliminate some of the arbitrary spa-
tial functions arising from integration of the other
field equations.

From Eq. (25¢c) we find that

nao(x, ) = 12 9 (_1_ M) + Mo(x). (30)
n

72 an

However, the nonuniqueness of E leaves the function M«
ambiguous up to a gradient

= 2 9 /1 3E-x, n)) L
h4a —_ 17__ — 2\ i/ 1, o .
(x, 1) = 4 o (712 o + 3B +4X) + M)
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Then, as in the case of incoherent matter, we may find a
C«x) and a B(xX), such that

v2Ce =—Mo— 389, C*,=0.
Thus,

héa =ﬁi i%ﬂ)_ 2Cx). 31
(x,n) s <n2 o0 v2C«(x) (31)

Then, rewriting Eq. (25b) in the form
2
n (l _a_) (V2E — 3E") = 0,
én \n oan?
we see that
V2E — 3E” = n3N(X) + nP(x) + R(x).

Moreover, the remaining gauge freedom, and non-
uniqueness of E still permit changes of the form

E =E + n3a(x) — 2H1b(x) + y(x).
Thus, by choosing a,y, and b to satisfy
V2a =—N, V2y=—R,
and
v2bh = (1/2H) (P + 6a)
we can always require E(X, 1) to be a solution of
V2E — 3E" = 0. (32)
From Eq.(26b) we determine that

S (%, m) = 3hor(x,n) + V2V 2CH(x) + 8 g2cu(x)
n
+ 23EEEN) , piy),  (33)
n2 3y

where, by Eq.(26a), I*(X) is divergence free. Since the
choice of d* in Eq. (28) is fixed only up to a divergence
free vector e¢#(x), we may eliminate I* by choosing e* to
satisfy

V2ea = Jo,
In this gauge, the trace-free part of the metric satisfies
Sog” + (2/n) Sy —v2S%, = Eo."" + (3/n) Eo”
+ (nv2v2 + (6/m)V2)(C> 5 + C; )
+30%[(3/n)V2E" — V2E"'].

Again we may use Sachs—Wolfe to construct a particu-
lar solution ‘,9“5 compatable with Eq. (33), so that the
general solution is given by

Stxe = oaB + ?aﬂ’
where

gaﬂ" + (Z/n)gaﬂ’ - VZ(.)SOLE =0,
with

69“8 a= 0.

© Writing

§2 = (1/m)Des,
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we see that D@® must be a solution of D'Alembert's
equation
OD«8 = 0. (34)

Reconstructing the trace-free part of the metric, we
have

59 = (1/1)D% — [192 + (8/m](C= , + C, )

+3E % — (/) E*, — 56%[(1/n)V2E — } V2E'],
(35)

in agreement with Sachs—Wolfe.

IV. SUMMARY

The general C® solution which we have constructed for
the perturbations of a Robertson~Walker, ¥ = 0, uni-
verse containing either dust or radiation is precisely
that first obtained by Sachs and Wolfe. However, we have
shown that the admissible, metric determining functions
ks need not be restricted by moment conditions. Rather,
these functions, first reported by Sachs-Wolfe, form the
most general C* solution if the potentials are C*. Note,
in this connection, that the illustrative solution given in
Eq.(12) is indeed a C* solution. We should stress that
our success with this simplified approach was aided
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immensely by an a priori knowledge of the Sachs~Wolfe
results. We refer the interested reader to their paper
for an interesting discussion of the physical interpre-
tation of the potentials appearing in the solution. Fin-
ally, attempts to construct the general solutions the the
perturbation problems for Robertson—Walker universes
with £ =0 have been plagued by difficulties in construc-
ting complete sets of orthonormal functions on the 3-
surfaces of constant density. It may be hoped that the
simplified approach presented here will facilitate solu-
tions to these problems by working entirely in configura-
tion space.
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Correlation inequalities < 0% > >0, <%0 > > <04 > <05 >, 0<0% > /aJ5 >0, and
3 < 0% > /3J5 <0 are proved for the generalized X Y model with the Hamiltonian of the form

H=—3(Jjoh +J70%), whereo =11, 07, o =1, 07

, Ji 20, JF >0, 4 denotes an

arbitrary subset of the N lattice points, and o o:, are the Paull matrices. This yields a simple
extension of the Griffiths~Kelly-Sherman inequalities to the above quantal system. Applications to

phase transitions are also discussed briefly.

1. INTRODUCTION
We consider the following Hamiltonian

¥ =—25 Uiog +J50%), (1.1)
A

where JZ = 0,J7 = 0, and

o¥=T11 o, (1.2)

z — z
o Il o and 2.9

j€A T

This includes as an example the ordinary X-Y model,
the Hamiltonian of which is given by

Sy == T U050y +05017) = 2 Hpof + Hyop

ij 1 ij i g
(1. 3)
with JZ = 0, J% =0, Hf = 0, and H = 0.
In this paper we prove that
(0f) = 0, (ogoz) = (0f)(0f), (1.4)
a{oz) 2{o2)
22>0, and Al<, (1.5)
dJE 9J%

for the Hamiltonian (1.1) under the conditions that Jz =0
and J§ = 0. Recently Gallavottil has obtained the above
inequalities (1.4) and (1. 5) for the ordinary X-Y model
(1. 3) in the absence of magnetic fields (i.e., for Hz =0
and H* = 0), by using the reduction formula of the quantal
partifion function to a classical one derived by Suzuki
and Fisher,2 and consequently by applying the Griffiths-
Kelly-Sherman inequalities3 to a classical system thus
reduced.

2, PROOF OF CORRELATION INEQUALITIES

Here, a slightly different approach is made to give a
simple proof to a more general case (1.1). Following
Ginibre,4 we reduce the partition function of the Hamil-
tonian (1. 1) to that of the Ising model with many-spin
interaction and with higher dimensions, by using
Trotter's formula:

exp(— Bc) = lim {exp(—n-183 ) exp(—n18%, )}

= lim {exp(—n-183¢,) (1 —n-183¢,)}», (2.1)

where 3¢ = &, + J¢;. This is easily extended to the
following form

exp(— 8%) = }11_’190 {exp(— n-183¢,) vgll (1 —n-183¢,)}* (2.2)

for a bounded operator 3 of the form 3 =2 7., &, (for
detail, see Ref.2.)
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From (1.1) and (2. 2) we then obtain

Zy=lim &y, (2.3)
where
tI)an Z; Tt Z; <°'1’02"“’°’Nl
o=¢1 oy=%1
X {exp(—n-183,) i (1 + €05 )nloy,0,, 0,04,
(2.4)

with €, =n"18J% and 3¢, = — ) JF07 is diagonal in the
above representatlon 01,00, *,04).

Consider now the matrix elements of (1 + ¢,0%):
expf(o,,05)= o, H A + e08){os ],

where {0, } denotes a set (g, };j € A). It is easily seen
that if the matrix elements’(2. 5) represent “ferromag-
netic partial Boltzmann factors” for all A, then the “par-
tition function” &, , (and consequently Z,) is equivalent
to that of the Ising model with “ferromagnetic” many-
spin interaction in the sense that

Jeferro = —33J,0,, Jy=0.

(2.5)

(2.6)

For more details, see Ref. 2. Then, the key point of the
present argument is to find out the explicit expression
of the function f(o,,0;) in (2.5) and to show that

flo,,0;) has the form (2. 6). Without loss of gene-
rahty, we assume that of takes the form o} = 0§0% -+ o
(m = arbitrary positive mteger) This is expressed as a
direct product

01 -/01 /01
of = X < . % ( > ] 2.1
10/, 10/, 10/,
The matrix elements of the of are given by
Lo Lo
oMoz H{oi b = l} ilog—a)2 = j131 3(1 —g;0)). (2.8)

From the property (2.8) it is easily shown that
Qo H1 + eqoz {1 P
m m (0 _ 0-')2
= li -_ —g’)2 kTR
w5 - - 23

X exp <—1 (logez1) f} (0 — 0} )2>

j=1
1 nkgT\ 7

= ex —Io( ) 0,0/ —

pl:2m € jz=>1(]‘1

m

+o 2

j. k=1

(0,0,0/0; — l)jl . (2.9)

Copyright © 1973 by the American Institute of Physics 837
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For a sufficiently large n, we have log(k,T/J5) > 0.
Thus, it is proved that the partition functlon &y, is equiva-
lent to that of the Ising model “ferromagnetic” two-spin
and four-spin interactions. Furthermore, the effective
ferromagnetic interaction (2m)1 log(nkBT/Jjj) in (2.9) is
a decreasing function of J§. Therefore, by applying the
Griffiths—Kelly-Sherman inequalities for the Ising
model with interaction of the form (2. 6) to the above re-
duced effective Ising model with “ferromagnetic” many-
spin interaction, we arrive immediately at the correla-
tion inequalities (1.4) and (1. 5) for all nonzero tempera-
tures.

In particular, for the ordinary X~Y model (1.3), we have
the inequalities

and

d
<0,{'> =0 _B.H_" <UAZ> =0,

7

2.10
aHz (2.10)

in addition to the results obtained by Gallavotti.l

3. APPLICATIONS TO PHASE TRANSITIONS

In this section we consider as an example the one-
dimensional X-Y model the Hamiltonian of which is
described by

¥ =— 47_‘, ngl [2ozoz, + J*(m)oFoz, ], 3.1)
where
J:u)=0, J*m)=0, 2, J:m)<w, and
= D rm< o 6.2

Hereafter without loss of generality we assume that
J2n) = J*@n).

(a) If the interaction J% () satisfies the condition

N
lim {log(logN)}1 27 nJ?(n) = 0, (3.3)
Moo n=1
then there is no long-range order with respect to 02 —
0% and ¢* —o* correlations (i.e., M2z =0 and M* =0)for
all nonzero temperatures. This is easily derived from
Dyson's results3 on the Ising model [i.e., (3.1) with
J*(n) = 0], by utilizing the correlation inequalities

9
37 (n)

proved in the previous section.

(b) When the interaction J#(n) takes the form J2(n) =n"s
(1 < s < 2), Dyson® has proved the existence of the phase
transition for the Hamiltonian (3. 1) withJ* @)= 0. Now,
we define the critical temperatures T8 and T (XY) py
singular points of the susceptibilities x37 [= 2 » 0F02)
for J* {2) = 0] and x37, [which is defined by the ' andnical
correlation 2. , (o7 ok) for J%{z) # 0], respectively. Then
we obtain the mequahty

{0 20§)< 0 etc., (3.4)

T &XY) < T(19), (3.5)
by applying the correlation inequalities
020) gy = (Of0F) s (3.6)

to the susceptibility x?# and to the asymptotic relation®
28, ~ 2 <°jz°f>xy 3.7
KA

near the critical point. The above relation {3.7) is con-
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firmed from the following inequalities concerning the
canonical and direct correlations6.7:

(1 —e89)/pw = (6Q,6Q)/(6Q)2) = 1 (3.8)

for an Hermitian quantity @, where w is the first mo-
ment defined by

@ = (6@, [%,5Q])/((6Q)2),

being finite at 7, in usual situations.

(3.9

It should be remarked that the above inequality (3.5)
is, in general, valid for the ordinary X-Y model (1. 3)
with H? = Hf = 0. In more general, we have

ATEN/BJE=0 and 3THEYV/aJ% =<0, (3.10)
for JE > JE = 0. The numerical results on the critical
temperature T/£7) obtained by Betts ef al.8 are consis-

tent with the above general relation (3. 5).

These results on the correlation inequalities (1.4)-(1.5),
and the relations (3.10) on the critical temperature may
also be applied to discussions on the critical behavior

of the quantum lattice gas model originally proposed by
Matsubara and Matsuda.?

4. DISCUSSIONS

The physical reason why the Griffiths type inequalities
(1.4) and (1. 5) are valid for the Hamiltonian (1.1) is
that the off-diagonal interaction 3¢, = — 25, J50f U5 = 0)
plays a role to decrease the ferromagnetic correlatlon
among oj‘—spins,but that it has not enough of a coopera-
tive effect to cause an “antiferromagnetic” correlation.
Namely, one can say that 3¢, is a dynamical random
force acting on z-z correlations.

It seems impossible to extend our arguments to higher
spin problems.

The present results on spin correlation functions may be
applied to the discussions on critical exponents in a
separate paper.10
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The transformation from a harmonic single-particle basis
to the self-consistent harmonic approximation®

Laurent G. Caron
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The transformation rules between a harmonic single-particle basis and the self-consistent harmonic
approximation in quantum crystal theory are deduced. In the process, the thermal renormalization of
the phonon spectrum is calculated to all orders in the phonon—phonon interaction. The
generalization of the transformation technique to a Hartree single-particle basis is speculated upon.

1. INTRODUCTION

In a recent paper,l a low temperature formalism for
quantum crystals in the single-particle picture was
developed. This formalism required mapping the single-
particle space into a quasiparticle, boson space. This
was done, however, under the implicit guideline of the
random phase approximation (RPA) in that the excita-
tion spectrum was the same as Werthamer's.2 For a
Bravais crystal, in addition to the three acoustic phonon
branches the RPA spectrum exhibits some higher
energy ones even in the limit of a harmonic interatomic
interaction. These single-particle type excitations
prove to be the unsatisfactory outcome of the method.

It is our feeling that any decent treatment of atomic
motion originating from the single-particle picture
should be able to correctly reproduce the harmonic
limit. Consequently, we shall endeavour in this paper
to formulate a modified mapping procedure for a har-
monic single-particle basis which does culminate in the
equivalent phonon basis. For anharmonic systems,

this leads to the self-consistent harmonic approxima-
tion.3 Although Brenig4 has shown how the harmonic
phonon spectrum can be unraveled from a small subset
of harmonic single-particle wave-functions the proper
treatment of the complete set has not yet been achieved.

The one-dimensional harmonic oscillator is first
examined. The insight gained from this simple analysis
paves the way for a more complicated problem namely
the harmonic crystal. Subsequently, the anharmonic
crystal is studied and the full transformation procedure
is developed. It is seen that thermal renormalization
due to phonon—phonon interaction can be accounted for
quite naturally. We end by speculating on the approach
to a Hartree self-consistent basis using the knowledge
gained from the treatment of the harmonic basis and
from the RPA.

For the sake of simplicity the analysis will be concen-
trated on a Bravais crystal of orthorhombic or higher
symmetry. The interatomic interaction will be of the
two-body type.

1l. ONE-DIMENSIONAL HARMONIC OSCILLATOR

Any transformation procedure used to obtain the excita-
tion spectrum of atoms starting from the single-parti-
cle picture should be able to reproduce the results of
the one-dimensional harmonic oscillator. This aspect
has not been dwelled upon in Ref.1. Had this been done
it would have been easily observed that the proposed
transformation rules did lead to spurious excitations.

It then seems more logical to start from this simple
case and proceed from there.

The one-dimensional harmonic oscillator Hamiltonian
is

839 J. Math. Phys,, Vol. 14, No. 7, July 1973

m2 32
¥=—— — 1+ it Mw2X?2, (1)
2M 3x2

where % = Planck's constant /27, M = oscillator mass,
w = oscillator frequency X 27.

This Hamiltonian is normally quantizedS using the
quasiparticle, boson operators b*, b which create or
annihilate an excitation. The end result is

H="Hhwdd + ). (2)

The immediate aim is then to be able to reproduce Eq.
(2) starting from the single-particle representation.

The configuration space eigenfunctions of the Hamil-
tonian, Eq. (1), are

r\1v4/ 1 1/2 .
¢ (X) = <—> < ) H, (D 1/2X) e TX%/2,
s 2rn!

n=012,..., 3)

where
I'/=Mw/k @)

and H, is the Hermite polynomial of order n. The eigen-
values are

E,=hw@ + 3). (5
The Hamiltonian can then be second quantized in the

single-particle picture using the complete set of eigen-
functions. The occupation space Hamiltonian is

H=37 [dx¢ (X)%d ,(X)a}a,,
m n
=Lkon + z)ata,, (6
n
where the af, a, create or annihilate the oscillator in
the state with quantum number n. The oscillator spin
index is unnecessary since the spin is conserved in

Eq. (1). These operators commute or anticommute for
integer or half-integer spin values respectively.

In the same spirit as Ref. 1 but under the constraint
that there be a single type of quasiparticle operator as
in Egq. (2), let us postulate a correspondence between
the set of oscillator eigenvectors

|¢,? = oscillator in eigenfunction ¢, (X), N
and the complete set of boson eigenvectors

|#) = state with # bosons. (8)

Associated with this boson vector space are the opera-

Copyright © 1973 by the American Institute of Physics 839



840 Laurent G. Caron: The transformation from a harmonic single-particle basis 840

tors b, b which create or annihilate a boson. They
obey the following rules
[b’ b] = [b.r’ bT] =0,
[b,67] =1,
binm) =nl/2|n —1), 9)
b¥n) = (n + 1)1/2|p),

The single occupancy of the oscillator states suggests
the following equivalence relationship:

Tyn m
dta, — TLXOO" (10)
(nlml)1/2
where
= (=1
X(0) = ®") )" 1)
r=0 r!

projects out the boson vacuum state [0).

From the operator rules, Eq. (9), and because of the
single occupancy of the oscillator, it can be verified that
the following operation

ala,le,)=19,)8,, (12)

is equivalent to

(b*)»X(0) () ™

nlm!)1/2 o = |n)6mq (13)

thus asserting the validity of Eq. (10).
The Hamiltonian in the single-particle representation,
Eq. (6), is transformed with the use of the mapping rule,
Eq. (10), into

Fwm + 3)(01)"X(0)(b)"

n!

H=2] (14)

Using the expression for the projection operator X(0) in
Eq. (11), this becomes

o0
H= 2 Hw(F, + 3G,)(07)s()¢, (15)
=0
where
s (—L)ysnp 0,s=00rs>1
Fo= ST ={ ’ (16
=0 nl(s —n)! (1,s=1
and
s (—=1)s~n 1,s=0
G, = (—2— = . amn
7=0 nl(s —n)! 0,s>0
Consequently, the Hamiltonian in the single-particle
picture has been mapped into
H=Hw(®'™ + 3) (18)

using Egs. (15) to (17), which is precisely the form of
the quasiparticle Hamiltonian, Eq. (2).

This result assures us that the proposed equivalence re-
lationship, Eq. (10), is indeed the correct transformation

from the single-particle picture to the quasiparticle re-

presentation for a harmonic oscillator.
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Hl. HARMONIC CRYSTAL

The harmonic crystal is a multidimensional generaliza-
tion of the harmonic oscillator. The transformation
from the single-particle representation can be achieved
by an extrapolation of the analysis of the previous sec-
tion. The harmonic crystal Hamiltonian in configuration
space is

r2vz -
i 2M- + EEiz,-(ri~Ri) T (l'j —R]')9
(19

where ¥ ; is the interaction diadic, R, represents the
equilibrium position of the ¢th atom and is chosen to

correspond to a lattice vector,and r; is the instanta-
neous position of this atom.

H=—

Second quantization of this Hamiltonian in the single-
particle picture can be achieved through the set of
three-dimensional harmonic oscillator wavefunctions

¢l —Ry) = b,y =X )b, (¥ — ¥i)b,9(2 —~ Z,), (20
where

r\i14 1 1/2 12
¢n(a)(5 a) = (T) (m) Hn(a)(ra £q)

x e Taba’2 5 (21)
and

I,=Muw_,/i. (22)
The quantized field operator is then

lI’(l') = Et'Z;l|Z>cJ¢ll (r _Ri)aino’ (23)

where a,, , destroys an atom of nuclear spin o with
quantum number n at site , In the event that wavefunc-
tion overlap effects can be neglected and single occu-~
pancy at each site is preserved (see Ref. 1 for a dis-
cussion of this approximation), the Hamiltonian takes
the form of

H=Hy+ H,, (24)

where
72v2 -
Ho= 2, E<in' - + 30 —Ry) -7y
i oo o
. (l' —R1)| zn> a}n'oaino (25)

and
Hl = % 2 . Z; (in'jm' |(ri _Rl) '?ij

i=jnn' mm’ oo’

« (r;—R))linjm)al,; ai, afygr Gjmor - (26)

The definitions of the matrix elements in Eqs. (25) and
(26) are

Gn'1f(@) lin) = [drét@ —R)f ()¢, @ —R;)  (27)
and
@nim'|f(r;,r,)linjm) = [dr,dr; ¢3(c, —R))

X ¢,(r; —R)f(r;,r;)pa &c; —R))¢, (r; —R;). (28)

Under the restrictive conditions just imposed, the Hamil-
tonian conserves spin at each lattice site. It is then
possible to consider only a single spin configuration of
the system and relinquish the degeneracy to a

— NEkTIn(2s + 1) term in the free energy, s being the
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spin value of the nuclei. The effect of overlap and spin
coupling can be treated perturbatively. The spin index
on the annihilation and creation operators can then be
dropped while working on this spin subspace.

The proposed transformation rules are a simple ex-
tension of those for the harmonic oscillator

3 (b’;a)"'(“)xia(o)b?&“)

ta, , 29
a;n alnHa:l [n'(a)!n(a)!]l/z (29)
where
X0 = 5 S 010706, (30)

and where b7 create or annihilate a pseudo
excitation of &artesxan component ¢ at site i. Each set
of one-dimensional wavefunctions of Eq. (20) then
corresponds to a boson space

|¢n(a) , —R;.) < In(@),,

as in Eq. (7) and Eq. (8), each with its own quasiparticle
operators. If one chooses the axes such that the inter-

action diadic is diagonal and the oscillator wavefunction
frequencies w , such that

(1)

= [M-2(T};) ., ]*3 (32)

in other words,

(?ii)ae =Mw2b 4, @33)

one can verify that on using Egs. (29) and (30) one ob-
tains
K2v2
Z)Z:(“l YR +32Mw20' —R;,)? )

i mn’

(bw;a)n'(a) Xia(o) (bia)n(a)
a [ (@) In(a)! V2

ZE{ 3 Bw [F o + 26 g(w]

i a |s()=0

x (b‘;a)s(a)(bia)s(a)}Pa, (34)

where

P, = I [ > (35)

8o s(B):OGS(B)(bJEB)S(B)(b"ﬂ) S(B)J =t

where F, is given by Eq. (16) and G by Eq. (17).

Consequently, this same term is simply
Hy = Z} Z}ﬁwa(b‘,?abia+ 3. (36)
1 [+ 4

On the other hand, the recursion relations for Hermite
polynomials lead to

¢njm’|(r;—R;) -7, * (r; —R,) [injm)
u aB 1/
E a2 (4r r,)1/2 {[n(@) + 1][m (8) + 1]}1/2

X 6@ —n—&)6m —m —p) + {la(a) + 1)m(g)}1/2
X 8 —n —&)6m’ —m + B) + {n(a)[m(p) + 1]} /2
X 8" —n + &)6@’ —m —B) + fn(a)m (B)]1/2
X & ~n+ &)sm —m + f). 387
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Consequently, with the use of Egs. (29) and (30), the H,
contribution to the Hamiltonian can be written as
1 -~
Hi== T L% @ujm|c,~R,) -7,
2 i#j nn' aw’
(b}‘a) " (a)Xia(o) (b ia

[’ (@) tn(a)!]1/2
ym8)

) n(a)

X (r; —R;)|injm) I
o

019 ™ O X,y 00,

X I
8 [(B)m'(B)1]1/2
1 (?U)aﬂ ‘

=— — i7ad G
2:‘:4—1) ? ? (4T, T,) V2 Ls(@zo 5@

X [(bf )stad+1(p a)s(a) + (1, )S(a)(b s(e) +1]}

xf Z} Gs(s)[(b}a)sm*l(bja)s(”

1@

+ (b7 ﬂ)S“”(b is) s@)*l]}P Py, (38)
or finally as
v
g=t pry e g oy
4M i#j a B (“’a“’a)l/z
(A b;g). (39)
Using the results from Eqgs. (36) and (39) one can
synthesize the full Hamiltonian
H= E Eﬁw Blghio + 2)
+—ﬁ—— Z}EZM@T +b )
4M 7w 8 (w,wy)1/2
X (blg + bjp). (40)

It is in the form of Eq. (16) of Ref.1 except that here
the indices run over the three Cartesian axes. It can be
diagonalized by the following canonical transformation

3
bio =NY2) 2, explik - R,)[A,, ®dy, + B, ®d,],
k v=1
(41)
where
N is the number of atoms in the crystal, k is a wave-
vector in the first Brillouin zone, and
A(k) A*(k) — B(k) B*(k) = ], 42)
A(k) B*(k) — B(k) A*(k) = 0. 43)
The eigenvalue equation is
Up®E20E, = ?Maﬂ(k) Us, &), 44)
where
Ry, &
M = (Hw,)V2|Hw,b — o (w12
o) = () [ a8 " Mo, ws)l/z}( T )
v 50) = N-1 i;j (V) 45 explik - R, —R;)], (46)
Ak = ifw, /oy ,)V20,,& + (wy, /w,)V20,, &), )
-Bay(k) = %[(wa/wku)lleauck) - (wk y/wa)llzuay&)]' (48)
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The necessary invariance of the Hamiltonian with res-
pect to a translation of the crystal requires

2 nV;=0, 49)
7
which in addition to Egs. (33) and (46) leads to

(Vi) o = Mwld 4 = _izjj (Vi ap = —

V.45 (0). (50)

Consequently, the eigenvalue equation can be written
down as

w®wE, = ?M'l[vaa(k) — V45 (0)] Ug, (). (51)

This equation is recognized as the one encountered in
conventional harmonic phonon theory® where Zwy , is
the vth acoustic branch phonon energy and U, (k)

(@ =1, 2, 3), its polarization vector components.
Furthermore, under this canonical transformation, the
Hamiltonian becomes

H= ? DHwg,df, dg, + %) (52)
v

which is again identified with the usual phonon Hamil-
tonian in the collective representation.6

IV. ANHARMONIC CRYSTAL

The anharmonic crystal case is the logical extension
of the analysis. The Hamiltonian for such systems is

n2v?

H= Z)( +3 EV(ri r-), (53)

where V(r; —
Second quantization is again achieved through the
quantized field operator of Eq. (23) where the spin in-
dex is dropped for the reasons mentioned in Sec. III.
The coordinate axes for the single-particle wavefunc-
tions in Eq. (20) are chosen along the principal axes of
the crystal. This is the reason for considering only

r j) is the two-body interatomic interaction.

Fi2v2
<in"— YY; z'n> = %}%h’wa[n(a) + 3]6(@’ —n)
—ihw {m(@) + 2)@(e) + 1)}1/26@ —n — 28)

—ithw {7 (@) + 2][n' (@) + 1]} /26(@ —n' — 2&),(
55)
and with the use of the equivalence relationships, Egs.
(29) and (30), H, can be transformed into

0
Hy = Z}E( 5 My (Fyy + 4Gy (b1,) 5@
i a \s(a)=0
X (0, )S(u)) ZE( ¥ ihw,Gy,
i a \s(a)=0

X [(bT. )s(a)+2(b. ) st + (b‘: )s(a)(bi )s(a)+2]>P
= Z)Z) Fw,[1+ 2675, —®},)2—0,,)2, (56

where the F, G, and P_ functions are given by Egs. (16),
(17) and (35), respectively.

On the other hand, the potential energy contribution to
the Hamiltonian is

Hy=% 2 2 ZGnjm |V, —

r;)|injm)
i#j nn' mm’

Xalya;,ale a;y (57)

which, using thé result of the Appendix, can be written as

m=-Z Z T DT

i#j ’znm’'zZm ssnp=m
X (fojo | [TIT vir'(a)-n(e)+2 s(e)] g Im' (B) - m(B)+2p(8)]
o B ia i8
X V(r; —r,) liojo)
X H{[n(a) — s(a)]gs(a)g(gra)[n'(a)—n(a»z s(a)1/2
a
X [n' (@) —n(a) + s(@)]1}-1

x {B1,)"@ X, (0)(b,;,)" + [1 — 56’ (@) —n(a))]
x (b1, )" () Xia(o)(bia)n’(a)}

Bravais crystals with orthogonal translation vectors. x 11 {[m( B) — u (B (B! (2rﬂ)[m'(ﬂ)—m(ﬁ)+2 wel/2
‘The kinetic energy contribution to the second quantized B ,
Hamiltonian is X [’ (B) —m (8) + p(p)]1}-2
n2v2 X {(B1)™® X, (0)(b;0)™®) + [1 —8(m’ (@) —m ()]
= n’ | — ; +
HO = Z} %} ? <1rn lﬂ)din,am. (54) ¢ (bJ-'-B) m(ﬂ)xjﬂ(o)(bjﬂ) m'(ﬂ)}. (58)
Since This last equation can be rewritten as
1
Hy=— 27 (ojo mr (V) 2(V,;) 9BV (r, — ) | iojo)
2 i#j pq
(b'r yple)- s(a)(b st + [1 — 8(pla) — 2s(a))]®d1, s(a)(bia)P(a)~s(a) )
=p/2 s{a)!1(2T,)#@)/2 [p(a) — s(a)]!
(b* ya(8)- u(a)(bja)u(a) + [1 —o6(q(B) — zu(ﬁ))](b‘rﬂ)u(a)(b B)q(ﬂ) u(B)) ©9)
X .
<q/2 a 1(B)1(2Iy)9®)/2[g(B) — p(B!

Let us now define an ordering operator O which puts
the creation operators first when acting on a product of
boson operators with the same indices. For instance,
one has

Qbi b ia b]y bf
With the help of this operator, Eq. (59) is simplified into

=bl,b;,bj5 b}s- (60)
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Hy Z) 2 (wJOIH ﬂ(v,a)P(“’(VjB)q‘ﬁ’
2 i#j pq

XV, — r,)lzoyo)

o}, + b )@ 0], + b;5)9® .
a \ pla)! (2T )# /2 [Bl q(g)g(zrﬁ)q(a)/z' (61)
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The Fourier transform of the interatomic potential is
now introduced as

_ 1
T (2m3

V() [arv(r) exp(—ik- r). (62)

The inverse Fourier transform is
V) = [dkV(k) expGk . r). (63)
Using Eq. (63), the potential energy contribution is

Hy =32, [dkVE&)U,; & Gojo|explik . (r; —r;)]liojo),
e (64)
where

Uij(k) = Z; H(
Pq o

OBt + b, )Pk )P
pla)! (2T, ) p/2

oblg + bjﬂ)"(ﬁ’(— ikB)q(a)
. (65)
B q(ﬁ)!(zr‘e)q(ﬁ)/Z )

Because of the anharmonicity of the interatomic poten-
tial, #, exhibits nonlinear terms in the boson operators.
These contain the information on the phonon-phonon
interaction. Linearization of H, can be achieved by a
Hartree-Foch type factorization whereby each term de-
composes into a sum of all possible products of thermo-
dynamic averages of separate pairs of operators except
for one or two unpaired operators depending on whether
their total number in the given term is odd or even.

For instance, one would have under there rules

b1, bigb;s b5 = b‘;abiﬂ(bjybjé)

(bigbjs) + b1, 0;6¢D,505))

(bl bjs )+ bighjs (bl 0550

ta

Jy
+ 01,0

ia iy

+ 50y,
+ by b5 (b1, byp), (66)

where (+-+) represents a thermodynamic average, All

possible pairings are considered since the boson

operators do not correspond to those of the true excita-
tions, e.g., Eq. (41).

Out of all the terms of H, there is one and only one
which does not contain any boson operators, It is the
one for which p =q = 0. It is equal to

z 2 liojo | V(r; —r;) | iojo). (67)

i*]

Under the factorization rules there will be no term with
a single unpaired operator. These can only arise from
terms containing an odd number of operators, that is
when

2 [pl@) + q(@)] = odd. (68)

Such terms vanish because of the inversion symmetry of
the crystal.

Let us now consider the coefficient of the factorized
terms of UijCk) having the unpaired operators

opl, +b,;,)% (69)
Only the terms of Eq. (65) for which

v +q@)]=2m+1), n=012"--- (70)
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can contribute a factorized term like Eq. (69). The pro-
ducts of thermodynamic averages of separate pairs of
operators will yield contributions to U;;(k) of the form

(<(b11-a + biq)(b;’.e + b]ﬂ))ka kB) s(a,B)

— 1
1111 [(o) 14(8) 1} s

k2

2T, 21-‘“ (1)

Y

W ECIAINLE I E RN
Y

where
2s(a) + 4? [s(a,B) + s(B, @)] + 28, =pla) + qla),

pla) =2m(e) + 25 s(a,B) + 25, O0smlo)s<s(a).
8 (72)
Owing to the translational invariance of the
(oG}, + biy)z) average, all values of p(a) and g{a)
which are consistent with Eq. (72) will contribute a term
the likes of Eq. (71). Moreover, for a given p, q, 8, and
'S there are

- pla)!g(a)! on
o [pla) — 2s(e, Bt [ql@) — 22s(B, ]! v & sly,0)!

8 8 (73)
possible ways of obtaining distinct intersite pair
averages and

1 a(a)!

1 — -
E{: + 8, (2 ala) >:| 2e@ 22 a(a)]!
Al , (14)

8 2“6)/2[%1,(3)]!
a(a) = pla) — %)S(a,ﬁ),

b(B) = q(B) — 2 s(a,B),

different ways of pairing the remaining operators to ob-
tain the intrasite averages. The first bracketed term

of Eq. (74) differentiates the unpaired operators from
the paired intrasite ones. Note that a(e) and b(8) are
even numbers as per Eq. (72).

As a consequence of Egs. (72) to (74) the total number
of different ways of obtaining a term like the one in
Eq. (71) from the linearization procedure multiplied by

[p@)tg(®)!}Lis

(= 1)2"‘5(“)(“ HS(mBN) -1
a 8

s(y)
XM 2 {2"%m)12°7 "D s6) —m@)]1}-1
y m@=0

=z( 1)2“3(“)(ﬂ s(a, B} T s(y) l)‘l- (75)
o B Y

If we now sum over all values of 8 and ¥ consistent with
Egs. (70) and (72), that is

?[28(0) + %}(s(a,ﬁ) + s(8, a)>+ 267“] =2;+ 1),

76)

and then sum over all values of n, we find that the total
coefficient of the O, + b,,)2 operators in U,; k) is
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_ (4I‘“)'1kf ??? (— I)Eas(a)lz 1;[

x<<(b¥a+bia)(b}a+bja»kake)s(“’ﬂ) 1
(4r,r,)v2 s, B)!
y n((g(b;7 + biy)z)k$>s(7) 1

Y 2T, sy)!

=— (4T, k2 Zn) ij% frim —r)t}1

((b.{a + bia)(b}'ﬂ + bjﬁ»kockB)r
x@az @r, 1,172

X (— > {(ok], + bi7)2>k$>n_r

Y 2I,

0k}, +b
2T,

a

1) DR

=— (@I, %27 (n!)-1<— > ¢

(B, + b,,)(b1, +b,,) "
2 (4T, T,) V2 k"‘kf’>

= — (4T, exp[— KD ,K + :RG}K], )
where the matrices K, D;; and G;} are defined as
K, =k, (18)
D;;) p
(Gi}) op = (b1, + B,,) 0},
One should note at this point that in addition to a
[l(2 ) contribution to the linearized Uj;(k) there

is also a symmetrlcal o1, ju) 2 contribution. Con-
sequently, their contrlbutlon to H 1 is

= (001, + b, )T, 15, (79

+ b)) (T, T, Y2, (80)

DI fde(k )(iojo | explik « (r; —r;)]|iojo) @ik,)

i=j p
X (2T,)-! exp[— 2KD; K + %1!2'(;;].11{](_)(171.p +b,,)2
(81)
Since

(iojo | explik » (r; r;)l40jo) = exp[— Z}(ZFa)‘lkiJ
x exp[ik * (R; —R;)] (82)
Eq. (81) becomes

3 2 T [ dkv k) Gk,)2 exp[— $RG ;1K + $KG}K]

i®jop

x explik « (R, —R, )](2I‘“)-1(_)_(b§“ + bi”)z, (83)
where
GiM s = (Dyy) g + Tg18 4+ (84)
Defining a matrix
G:1 G;}
G-1= [ “1 ”1], (85)
GJ.‘i Gj‘j

it can be shown that
1RG;1K + $RG;}K] = 1-3|G 1 |-1/2
deeu exp[ik « (u;, —w;) + U, (G;H1U,,], (86)

exp[—
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where

Upe = (W51, 049, U3, Uj1 Ujo Ujss)- (87)

Using the result of the analysis of Koehler, Eq. (31) of
Ref. 7, Eq. (86) becomes

exp(— 3 KG;1K + $KG 1K) = 1-3N/2|G|1/2
x [ d3¥y exp(— UGU) exp[ik * (u, — uj], (88)

where N is the number of atoms in the crystal, U is a
column vector containing the 3N coordinate variables
u;, and the matrix G is a 3N X 3N matrix whose in-
verse is
G- ij a8 = (Gi-jl) aB ® (89)
After a change of variables from u; to(r, —R; )
Eq. (88), the contribution of the 1ntras1te term of Eq (69)
to the linearized H, is finally

f? 2 [a3Nrur v, Ve, —r )] ¥(2L,)1 0%, +b,,)2,
7 (90)
where
¥ = 1-3N/4|G|1/4 exp[— SRGR] (91)

and R is a column vector containing the 3N coordinate

variables (r, —R,) ..

As far as the (b} + b, )(blg + b;,) for a = 8 linearized
term of H, goes its coefficient vanishes because of the
imposed crystal symmetry.

There only remain factorized terms containing inter-

site unpaired operators like (6%, + b,,)(], + b;,) in

the linearization of H,. Followmg a procedure s1m11ar
to the one described for the intrasite terms one would
arrive at an additional contribution to H, of

X XY [d3Vre* v, v, VE, — 1,

i=j p v
X (4T, T,)Y/2(%, + b,,) 0], + b;,), (92)

where again ¥ is the wavefunction of Eq. (91).

Consequently, synthesizing the full linearized Hamil-
tonian from Egs. (56), (67), (90) and (92) one has

H; =Hy+ (Hy) inearizea ¥ $Ho + Hilur

- <HO + (Hl)linearized>

= Z}Z}ih’wa 1+ 26,5, —(01,)%2— ;2]

[N

+ 3 25 (@@ojo |V(r, —r;) | iojo)
inj

+ 31 D [a3vryr w2, vir, —r,)¥ (93)
i*j a

X (2T, )1[2b% .6, + @1)2 + (,,)2]

+3 D 0% fa3vrer [Via Vs Vi, — ;)] ¥

i#j a B

X (AT, Tp) ¥ 2(b7, + b, ) (0] + )

+ (Ho + Hy) yp —(Ho + (H1)linearizea -

Here (H, + H4) yp represents the Hartree—Fock
average of the full Hamiltonian. The reason for the
impromtu appearance of the last two thermodynamic
averages of Eq. (93) stems from the well-known fact
that a Hartree-Fock procedure overcounts the average
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interatomiec energy but not the excitation energies.
These additional terms insure that

(HL>= (Ho +H1>HF: (94)

i.e., that the thermodynamic average of the linearized
Hamiltonian is equal to the thermodynamic average of
the full Hamiltonian in the Hartree—Fock approxima-
tion. This can be further evidenced from the following.
After going through the procedure which led to Eq.
(90), it can be shown that

EZ "li hwcx [1 - <Q(b‘:ot bia)2>]
1Y [a3¥ru*vie,—1;)¥, (95)

i=j

(Ho + Hy)yp =

which is obviously different from (Hy + (H3) |inearizea’
as calculated from Egq. (93). The difference originates
in the interatomic interaction part Hy,i.e., (Hy) yp #

{(H1)1inearizea’-
The first step towards diagonalization of H is to set
={M-IN1 Y [a3¥r¥* (V3 V(r,—r,)]¥}/2  (96)

i#j
which is the generalization of Eq. (32). One then has
HL= Ezﬁwab;abia
- 4

+3 2 ZZ Ja3¥y w¥ v, v, V(r, —r;)]¥

i®j a

X (4T, r)—l/z(b. +b,; )0 +bjp)
+Z)Z,‘ ihw, + 3 Z)(zoyolV(r ~r;

) | iojo)

+(Ho + Hy) yp — <Ho + (Hq) tinearizea)* (97

This Hamiltonian is of the same form as the harmonic
crystal Hamiltonian, Eq. (40), and is diagonalized in the
same way. The canonical transformation is again

bia = N—1/2 EE exl)(ik ° Ri)[Aav(k)dku + Bau(k)drky]’
k v

(98)
while the eigenvalue equation is also
U, ®7r 2w, = ?Maﬂ(k) Ug,®), (99)
where
Bvy, k)
M = (fw )1/2(Hw_ 6 ™ ) (w12
ol = B0 ( Walas ¥ M(wawa””) T oo
V) = N1F [d38r¥* [V, v, Vir, —r))]
i x exp[ik + (R; —R;)]¥, (101)
A& = §fw, /wy,)Y2U,, & + (W, /0,)2U0,,K)],
(102)
B, & = ;[w, /o) 2U,,K — (0, /w,)2U,,K)].
(103)

Furthermore, the imposed crystal symmetry and the
rules of partial differentiation lead to

N1Y [a3¥rw* [V, v, Vi, —r,)|¥

i*j

=8, N1 [d3Nru* V3 Vi, —r;)]¥
i#j

——N']'E fdsNT\I’*[V,a ]BV(ri—-rj)]\Il. (104)
i=j
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Consequently, the eigenvalue equation becomes

U@y = DMy = 0,000 @ (105

This is equivalent to the eigenvalue equation of a har-
monic crystal with the interaction diadic

= [a3¥r¥* [V, v, V@, —r;)]¥. (106)
Because of Eqs. (98), (102), and (103) the different ther-
modynamic averages encountered in the formalism can
be evaluated. One obtains
g)? = iN‘lzk) exp[ik + (R; —R;)]

(0D}, = (bﬂ:l: b;

X}‘Q[Awm & Boo @1 + 2y, )[A 5, &) 2 By, (0]

—by 6&6%’
=t (wawﬂ)*l/ZN‘léj explik « (R; —R;)] (107)
Ew 1+ 2n,,)U,, ® U, & —5,;6 40
where
w = (4, dy ). (108)

Consequently, from Egs. (79), (80), (84), and (88) it is de-
duced that

(Gif) op = AMIN1T explik + (R, —R;)]

X T wpl(l + 2ny,)U,, ) Uyfk)  (109)

for all 7,j. Note that crystalline symmetry leads to

(Gz‘tl) aB = (G;il) aaoaﬂ’ (110)
This expression for the matrix G-1, Eq. (109), is seen to
be of the same form as the one quoted in Koehler's
work.7 As a matter of fact it is identical at the absolute
zero of temperature when n,, = 0. Therefore, at 0° K
the normalized wavefunction ¥ defined in Eq. 91 is the
ground state wavefunction of a harmonic crystal whose
interaction diadic is the one in Eq. (106). This is the
self-consistent harmonic approximation of Koehler. At
finite temperature, the wavefunction ¥ and the self-con-
sistent spring constants are renormalized by the factor
ny, in Eq. (109). As a consequence of this thermal re-
normalization, the wavefunction becomes more spread
out, thus reflecting the increased atomic motion, and

the self-consistent spring constants become larger. The
self-consistency condition is thus more physical at non-
zero temperature than the zero temperature one. The
linearized Hamiltonian is also reduced to its self-con-
sistent harmonic form

H,= 232) thwy, + 372, fd3N'r'I!*V(r —r;)¥
kK v

i=j

+ ? E ﬁwku(df;,, dkv - %nk,,). (111)
v

Note again that the %, term in Eq. (111) assures that
Eq. (94) is satisfied.

Let us define at this point a new operator £ which ex-

cludes all lower order linearized terms when acting

on a product of phonon operators. Thus, one would have
‘Bdiu dyy = d{u Ay

_<dl1:.udku>’ (112)
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£d{luld;2u2 dksus dk4u4 = d;lvl dizuz dk3u3 dk4u4
—Sdg i )y, o, —df Ly, VaL, dy
—Sd,,, dp ) Ay, —(dL Ay )AL, dy
+Adg,,, A ALy Ay )+ (Y, a0 KdE dy )

(113)
In other words, when £ acts on a product of phonon
operators, all lower order terms arising from a
Hartree-Fock decoupling scheme are removed in a way
that insures the proper thermodynamic limit. Using this
operator, the linearized Hamiltonian becomes

H;,; =Eyj+ Z}Eh’wn‘cd;udku, (114)
k v
where
Ey= 22 %h’wku (nky + %) + %E deNT‘I’*V(ri -l'j)‘II
kv iy (115)

is the internal energy of the crystal in the Hartree-
Fock approximation.

The nonlinear terms of the full Hamiltonian can also be
obtained using the procedure outlined previously. For
instance, the Hartree—Fock coefficient of the term of
H, containing the operator products

OT1 (B, + b, ) (B, + b, ) (116)
o
is found to be
%1;1 0 Ja3¥y ¢* [VH@ v Ve, — 1, )] ¥
X [u(@)w(B)!]-1(2T,)-#) (2T,)-»®),  (117)

Upon substitution of the canonical transformation Eq.
(98), into Eq. (117) followed by a summation over all

2 ule) + v(@)] ==, (118)

the total nonlinear contribution of H, is calculated to be
0
0H=32; 2, )1 252, Alky +kp + +*°k,)
i#j n=3 {x} {v}

X hn (2nank1”1 wkz”z e wy )-1/2

nVn

X fdsNr\I’* [vklvl szyz e an,,n V(ri _rj)]‘l/

x ‘s(dfkl”n + dkl,,l)(tzll‘kz,,2 +dg,,) 0

+
X (@l o+, ), (119)
where
1 if k = 0 or a reciprocal lattice vector
Ak) ={
. 0 otherwise,
and

Vi = N1 U, & exp(k - RV, . (120)

At the absolute zero of temperature, this form of §H

is identical to Koehler's one. It should be noted that the
operator £ prevents interference between the terms of
Eq. (119) with different n values. Since any Hartree-
Fock reduction of an nth order term is execluded, it can-
not contribute to any lesser order term. This explicit
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exclusion is required since the effect of Hartree—Fock
reduction is already included in the wavefunction ¥.
Although the operator £ might seem tedious to carry
along in an equation of the motion approach it is sim-
plicity itself in a diagram expansion in perturbation
theory.8 One can finally write the full Hamiltonian as

H= H, + 6H, (121)

where H; and 6H are defined in Eqs. (114) and (119),
respectively.

V. QUANTUM CRYSTAL

The quantum crystal problem requires a departure from
the harmonic single-particle basis in order to handle
the inherent nonlinearities. A normal procedure would
be to use a basis of self-consistent wavefunctions

¢a(r; —R,;) obeying the following eigenvalue equation

nav2 . '
(_ 2M i ,Z;e),- GOl Ve, —r;)lj 0)>¢n(r,~ —R;)

= €n¢n(l‘i _Ri)'

The matrix elements are still defined as in Eqgs. (27) and
(28) with the Hartree wavefunctions replacing the har-
monic ones. The n value here is a convenience to re-
present the three quantum numbers associated with each
wavefunction. Hence, one can no longer use these n vec~
tors as a basis for the transformation in Eq. (29). This
is borne out by the experience gained from the RPA
whereby in the Gillis approximation, Eq. (39) of Ref. 9,
the single-phonon modes sample all excited Hartree
states, Yet, whatever transformation procedure is

used it must be reducible to the one of Sec,III in the
harmonic limit., This suggests the more general trans-
formations rules

(122)

Ay in = mZ.)l’Uf(n', m’)U; (@, m)

H(b;a) m’(a)Xi 0‘(0) ® ia) m(a)
a

X ,  (123)
[m’ (@) !m(a)1]1/2
where the U; matrix is unitary, i.e.,
2 Ura,m)U;m,m)=6m —m") (124)
n
and
U; @, 0) = 6(n). (125)

This last equation means that the ground state at
lattice site ¢ is to be the boson vacuum as in the pre~
vious sections., The problem is then of finding this
transformation matrix for a Hartree basis.

Keeping in mind the asymptotic limit of the transforma-
tion rules for a harmonic potential as well as the Gillis
approximation® to the RPA spectrum, the following
single~boson eigenvectors are postulated.

U,@,8) =Az(e, — €0)(in|X |i0), (126)

where

Ay = (M/H2)[— (o |V2 lio)]-2/2. (127

The orthonormality of these three vectors can be
verified from Eq. (124) by making use of Eq. (41) of
Ref. 9. And indeed one has

U;m&)=06m—a&) (128)
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in the limit of a harmonic interaction which is precisely
the correct value of Sec.IIl. It is interesting at this
point to linearize the Hamiltonian at the two-boson
level as in spin wave theory, that is keeping only those
terms of the Hamiltonian which involve at most a pro-
duct of two b, or b}, operators.

Only the eigenvectors of Eq. (126) are required for such
a procedure. It follows that the Hamiltonian

H =Neg + EZ (€n

—€glat,a
+ 5250 Z}(znjm Vi, —rj)lzn]m)
z;ﬁ]nn’ mm’

X ain, aj_, a]-nain

— 2 2 (n'jo|V(r; —

i#®jnn’

r;) linjo)aly a; (129)

when linearized this way becomes

H, =Ney— % Z} (iojo | V(r ; —r;) | i0jo)

3 22 2o [~ (o192 |io)] L(iojo | VF, V(r, —r,) | i0jo,
1"] o

X bt b+ § 252 [Gojo V3, VE, liojo)]-1/2

H‘Juﬂ

X (10§o |V, V;p Vir, —1;) |iojo) (BT, b,

+ b1, b1

T blg + hicl).

(130)
Extensive use has been made of Eqgs. (41) and (42) of
Ref. 9. in arriving at this last equation. The eigenvalue
equation resulting from the diagonalization of this
Hamiltonian is

€ 20E, = ZB>MO‘B ®e,, K, (131
where
1 (iojo | V2, V(r, —r,) liojo) }1/2
= 1
Mo ) 4 N iZ;;j [~ Go |VE, |i0)]
5 . (iojo |V2, V(r, —r,) | iojo) \(1/2 139
N E [~ (Go |v241j0)] f (432
5 s (iojo | V2V (r; —r;) | dojo) N1
xlN z§j [— (o 192, 1j0)] dab * iZ==>j
(é0jo |V; , V;5 V(r; — ;) | dojo) explik (R,-—R]-)]l
(Gojo | V%, V2, | iojo)1/2 j’

and where ¢, (k) is the polarization vector of the vth
mode of the phonon with wavevector k., Except for a re-
normalization factor, this solution is similar to the one
of Gillis, ? Eq. (43), in which the spring constants are
just

(@0jo | ¥, V4 V(r; — ;) | d0jo). (133)
Our postulated single-phonon eigenvectors of Eq. (126)
are then compatible with the RPA result and do asymp-
totically go the proper harmonic limit. This does not
imply, however, that Eq. (126) is the only possibility for
the single-boson eigenvectors. It is only a speculative
one which does lead to physically acceptable results.

As for the many-boson eigenvectors, their construction
is even more speculative and does not seem to be unique.
Extrapolating on the idea behind Eq. (126) that the boson
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operators b, and b}, be associated with a linear dis-
placement operator one may postulate that

Ui (n, m) = (en - €O)<in E'P(m; P)HX‘;(Y) iO), (134)
P Y

where the primed summation indicates that

22 p(@) < 2ym(a). (135)

In other words, the polynomial in Eq.(134) is of order
Z} m (o) and the corresponding eigenvector is to be
associated with a product of boson operators of the
same order, IT1_(b;,)™(), The P(m,p) coefficients are
determined by the orthonormahty equation (124) between
all U, (, m’) for which

Z)m (@) < Lm(a), (136)
that is
—(E2/2M)2 %' Y P@m’,p) P (m, q) (fo | [H, TXE)]
P a a
(137)

X [H, 11 X §®)]|io) = 6(m’ —m).
B

There is, unfortunately, an undeterminacy in choosing an
orthogonal basis from a set of nonorthogonal vectors.
One can only impose that the proper harmonic limit

Z)P(n p)HXf’(“) - l'I(I‘ /m)L4[2m(D m (o) 1]1/2

XHp(TY2X ) (138)

be respected.

The problem with a Hartree basis is then twofold. First,
a systematic procedure must be found to generate the
transformation eigenvectors of Eq. (123). Second, the
hierarchy of boson operators as encountered in Sec.IV
should as much as possible be summed in order to
generate a closed form solution to the thermal renorma-
lization problem. Failure to achieve a closed form
solution restricts the method to temperatures lower than
the Debye temperature in which range a series expan-
sion in powers of (b1 b,,? is convergent.

VI. CONCLUDING REMARKS

The transformation procedure as applied to a harmonic
single particle basis does not offer a new approach to
quantum crystals. As a matter of fact it seems an un-
necessarily tedious procedure compared to the more
natural collective approach. But it does, however, pave
the way for a possible approach to a Hartree single~
particle basis. It must be borne in mind that any
generalized approach to the single-particle picture
must be asymptotic to our transformation procedure in
the harmonic limit. One should also be aware that the
effect of overlap, that is of particle indistinguishability,
can be treated systematically via the effective exchange
operator described in Ref. 1.

APPENDIX A

As indicated by Eq. (30) of Ref. 3 the matrix element of
a function f(x) between the harmonic oscillator wave-
functions of Eq. (3) is
(m @) In) = [ dxe ,(x)f (), (x),

= 2mI)V2(m — 1|V, f(x) |n)

+ (/m)V2(m —1|fx) n —1). (A1)
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With repeated applications of this recursion relation it
can be deduced that

(m 1) In) = ﬁo (m1n)) V2[00 —m + §)!(m — 8)1sl
X (20) (-m+29)/2]-1(0 |vr-m+25 f(x) [0)  (A2)

for m < n. Consequently, the interatomic potential
energy matrix element of Eq. (57) becomes

Gn'jm’|V@E,—r;)linjm) = A?/n 2
(iojo | 1;1 I‘;I Vin’(a)—n(a) +;s—(a) Vujm'n(lﬂ)—m(ﬁ) +2u(B)
X V{r; —r;) Iiojo)l;l[n'(a) In(a)!]1/2
x {[n' (@) —n(a) + s(@)]!
X [n(a) — s(@)]! s(@)! (2T, ) 1n' () -m) +25(e)]1/2} -1
X g[m'(m!m(s)!]”z{[m'(m —m(B) + u(B)!

X [m(B) — u(B)]lu(ﬁ) ! (21“6)[7’"(5)-11(3) +2u(B)] /2}—1 (A3)
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for the case n’ > n and m’ > m. The other cases

n’ <n and/or m’ < n are easily generated from Eq.
(A3) by permuting n’,n and/or m’, m on the right hand
side.
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It is shown how the classical Yang-Mills (and the Maxwell) field equations can be written in a
simple form by introducing differential operators based on the split-Cayley algebra. As a result, a
field algebra accommodating both space-time symmetry (Lorentz invariance) and internal symmetry
evolves. The connection between the view of the Yang-Mills field as a split-Cayley algebra and the
exceptional Jordan angebra M}, discovered by Jordon, von Neumann, and Wigner, is discussed.

INTRODUCTION

The purpose of this paper is to introduce a mathematical
formalism involving the equations of the classical
Yang-Mills! field. This formalism utilizes the split-
Cayley algebra,which seems well-suited to a treatment
of local gauge fields. Both the gauge fields and the
partial derivative operators, 2, will be expressed as
elements of this algebra and combined to form a new
operator which we call the covariant Cayley derivative.
In terms of this new operator, the equations of the Yang~
Mills field assume a simple form. While this result is
purely formal, it does exhibit a remarkable interplay
between the algebraic and differential-geometric as-
pects of the gauge fields. In particular,as we shall
show, the space~time symmetry (Lorentz invariance)
and the internal symmetry of the fields are synthesized
into a single algebraic object, which, incidentally, need
not be a Lie algebra. Although the discussion in this
paper is limited to classical fields, we would conjec-
ture that this synthesis is also a feature of the cor-
responding quantum fields. At any rate,the Cayley
derivative is an interesting object and should prove
useful in other contexts. As an illustration of its
utility we briefly describe its application to the Max~
well equations.

Cayley algebras have made infrequent appearances in
the physics literature. There seem to be three rele-
vant references. The first was in 1934 when Jordan,
von Neumann, and Wigner? initiated a program to
classify the algebras appropriate to quantum mechanics.3
The results of their classification turned up an excep-
tional case, the Jordan algebra M§, which, at that time,
they considered “too narrow for the generalized need.”
This exceptional Jordan algebra is the set of all three
rowed Hermitian matrices whose elements are the
Cayley numbers [essentially the Lie algebra U(3) over
a Cayley algebra]. In 1961, Pais? pointed out a striking
similarity between the algebra of interactions and the
split-Cayley algebra. Using this algebra he constructed
meson and baryon multiplets which possess many
strong interaction symmetries. He also indicated how
this scheme might be extended to the theory of weak
interactions. Later,in 1965, Gamba5 demonstrated that
a theory of quantum mechanics which includes SU(3)
symmetry among its particles enjoys many of the
mathematical properties of the exceptional Jordan
algebra Mg, discarded earlier by Jordan, von Neumann,
and Wigner.

Although the primary aim of this paper is to describe
some formal properties of the classical Yang—Mills
field, it is interesting to examine how these properties
are related to the work of Pais and Gamba. Both hint
at the possibility of a connection between the algebra
M8 or the Cayley algebra and the unitary symmetry of
elementary particles. Both,however,are algebraic in
content and do not discuss how this algebra could be
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fitted into a dynamical theory. In the concluding sec~
tion of this paper, we will show how local gauge fields,
which are defined by dynamical equations, can be ele-
ments of M§.

Finally, it is worth mentioning, we introduce the split-~
Cayley algebra via a vector-matrix representation (due
to Zorn). This representation is a useful tool and sim-
plifies computation. The multiplets introduced by Pais,
for example, are much easier to deal with when con-
sidered as vector-matrices.

In the next section the Yang—-Mills field equations are
rewritten in a form which allows easy comparison with
Maxwell's equations, which are needed for our presen-
tation. In the second section the split-Cayley algebra
is described. In the third and fourth sections this in-
formation is combined to present a new representation
of Maxwell's and the Yang—Mills equations, A discus-
sion of these results follows.

1. THE YANG-MILLS FIELD EQUATIONS (A)

Our starting point is the equations for the classical
Yang~Mills field, Eqs. (I) and (II) below. These can be
developed from several points of view,but for our pur-
pose the following brief description is sufficient. We
consider a Minkowski space~time manifold with points
coordinated by x,, u =1,2,3,4. Associated with each
point is a finite A‘imensional linear space, U{x), spanned
by the basis {e (x)}, A =1,2,3,...,N. The gauge fields
r p(x) are four linear operators acting on U(x). We could
consider these operators to be the “lift” of the tangent
vectors 9, to V(x),8

3, 4(x) = T8 (x)ey(x).

The dimension of V(x) depends upon the fields to which
the I‘”(x) may couple. For example,following Yang and
Mills, the gauge fields may be decomposed into a linear
combination of generators of the gauge group,

T s=12,...,R,

57
as
R
r,(x = SZ:,I P )7,
Here the ¢ are the universal gauge fields, independent

of their coupling to other fields,i.e.they interact in the
same way with all fields.

The Yang-Mills tensor, R ,,is defined in terms of the
gauge fields by

():R,,=8,[,—a,l, +T,T,—T,T,.

Terms like ', T', above represent the matrix multi-
plication

“‘qur‘u)"B1 = rﬁc S,

Copyright © 1973 by the American Institute of Physics 849
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Their appearance in R, , as a commutator reflects their
relation to the generators of a (non-Abelian) gauge
group. The field tensor,Rw, also admits a similar ma-
trix realization,Rﬁy g- As first pointed out by Utiyama,?
in such a realization the field tensor is similar to the
Riemann-Christoffel curvature tensor if the fields are
identified as generalized coefficients of linear connec-
tion. In fact, Eq. (I) could be written

(1): R,,=vV,l,—V,,

where V is a derivative covariant with respect to the
connection I ue

Next we examine the inhomogeneous equation
m:a,R,, =—J,

The current J,,is conserved and has contributions due
to interactions of the gauge fields with other fields; it
also has contributions from the gauge fields alone. The
latter contribution can be found by considering the co-
variant divergence of R,

(ar): V“R’“, =—J,
The covariant divergence of a second rank tensor is

ViRyy =0,Ry, + TRy, —R,, Ty,
so that if we denote
—K,=CR,,—R,,T,,
then
(n:j, =J, +K,.

The four vector,K ,,is that identified by Yang and Mills
as the contribution to the current due to the gauge fields
alone.

Our purpose now is to rewrite the field equations in a
form suitable to the introduction of an algebraic for-
malism. We first destroy the manifest covariance.

_ The gauge fields, ', can be split into spatial and tem-
poral parts and written,as is usual for 4-vectors,
(r,r 4). Here,however, each component is a matrix,
the realization of a linear operator. Some formulas
pertaining to the calculus of “vectors” with matrix
components are collected in the Appendix. Similarly,
splitting the field tensor into its spatial and temporal
parts we define the two vectors V and U by

R4k = Vk ’ (1)
Ry = €pmlUms (2)
where €, is the permutation symbol in three dimen-

sions (€, 55 = +1). In the vector notation defined in the
Appendix these equations become

V=0, — V[, +2, (3)

U=VXT +w, (4)
with

A= [[,,T] (5)
and

w=TxT. (6)
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The vectors A and w arise from the spatial and temporal
part of the commutator in R, ,. The cross-product,

T X I' (which is not zero since the components of I" do
not commute) should not be confused with a similar pro-
duct in the paper of Yang and Mills, The latter is the
Lie product defined on the generators of the given sym-
metry group. The cross-product above is defined as,

(TXT)=ey,I',T,,.

Following directly from the definition of V and U and
from the vector calculus of the Appendix, we have

Ve(U—~w) =0 (7
VX(V—2) — 0,(U~w) = 0. @)

Splitting Eq. (II) into spatial and temporal parts yields
the two equations

VeV =J 4 (9)
and

VXU+09,V=4d. (10)

Thus Egs.(I) and (II) reduce to Egs. (3) through (10). It
is interesting to compare these latter equations direct-
ly with Maxwell's equations for stationary media;these
are, in appropriate units8

VB = 0,

VXE + a4B =0,

V'(E + P) =0,

VX (B—M)—3,E +P) =ij.

Comparison with Eqgs. (7) through (10) prompts the
identifications

V=E+P, U=—B+M,

so that
E=9,/—VIl,, B=—VXT,

P=x, M=w.

It is convenient to make one further transformation, If
we denote,

V,=V U
1=V, (11)
J=VXX—23,0,
then Eqs. (7) through (10) become:
VeV, =Jy £y, (12)

VXV, :3,V,=Jd4+J.

With these preliminaries completed we now discuss the
split-Cayley algebra.

2. THE SPLIT-CAYLEY ALGEBRA

The following brief description of the split-Cayley al-
gebra is based on an explicit representation, sometimes
called the Zorn vector -matrix algebra. It is a form of
the algebra well suited to calculation.

Consider a (real or complex) vector space of dimen-
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sion eight. We label each element, @,of this space by
the pair of four vectors ¢ = (q,4,) and p = (p,p4) and
arrange them in the matrix-like array

a=<q“ P )
q Py

Addition of any two such elements and multiplication of
an element by a scalar are defined in the same manner
as for 2-by-2 matrices. For convenience,we will often
denote this array by (q;p) or by (q,4,4;P,24). The bi-
linear multiplication of any two such elements

@ = (g;p) and B = (r;s) is defined by

@=(a 7))
q Dy/\r S,

_(q4r4 + per
T\gr, T p4r+pXs

(13)

(14)
g48 +ps,—qX r>
q°8 + pySy
This is similar to ordinary matrix multiplication with

the addition of cross-product terms insuring the non-
associativity of the multiplication.

The element I =(0,1;0,1) is evidently the unit element.
The operation taking @ = (q,q,4;p,p,) into @ = (—q,p,;
—Pp,q,4) is an involution; it is formally the same opera-
tion as taking the inverse of a unimodular 2-by-2
matrix. From Eq.(14) we can verify that

aQ = G4 = (g4, —q°pP), (15)
and if we introduce the quadratic form

Q(a) = qaby— AP (16)

it follows that this form is multiplicative,that is
Q(a®) = Q(A)Q(®).

The quadratic form can be used to define an inner
product,

am

@,® = z[Q(a + @) — Q(8) —Q(®)].
The “real” part of a product is

B + BQ = 2(G, B)I. (18)
If ¢(@) denotes the trace of @,

@+ @ =ta),

it can be checked that each element of the algebra satis-
fies the quadratic equation

@2 — ()G + Q(G) = 0.

Notice that the quadratic form of the element @ is
exactly the negative of the Minkowski inner product of
the two four vectors which label it. This is a property
of the split-Cayley algebra and is quite independent of
any geometrical considerations.

Next consider that each entry in the array (13) is a
function of the space-time point,x. We introduce the
linear differential operator,

D=a4v.
v o2,
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Here 3, and V are the spatial and temporal partial
derivative operators. D acts from the left on an ele-
ment of the algebra according to the multiplication
specified in Eq. (14). Forming the involution of D we
calculate that

DD =DD =—(V2 — 3, )1, (20)
so that the split-Cayley algebra provides another solu-
tion to the problem of factoring the d'Alembertian.

This introduction is sufficientfor our present needs.

However, in order to give some perspective, we des-

cribe a theorem (cf. Jacobson?) to clarify the relation
between Cayley algebras and the more familiar real,

complex, and quaternion algebras.

Let U be a real linear space with elements {x,y, "}
and equipped with a multiplication of elements, xy,
Although it is not necessaryl? we assume a unit ele-
ment, /. Suppose also that ‘U has a quadratic form, Q(x);
that is, Q(x) satisfies,

Q(ax) = a2Q(x),
with @ a real number, and where

(x, 3 = 3[Qx +y) — Qx) — Qy)]

is a (noridegenerate) bilinear form. Further assume
that the quadratic form is multiplicative:

Q(xy) = Q(x)Q(y).

From these hypotheses we conclude

(A) The dimension,=n,of this space can be only
1,2,4 or 8.

(B) For eachn {(n = 1,an obvious exception) there
are two and only two possible quadratic forms. Either
the signature is n (diagonal form has all +1's or it is
zero (diagonal form has half +1's and half —1's). If the
signature is n then the algebra is a division algebra,i.e.,
every nonzero element has an inverse, The division al-
gebras are respectively the real, complex, quaternion
and octonion numbers. These algebras have positive de-
finite quadratic form, If the signature of the form is
zero,the algebra is called split;there are,for example,
nonzero elements, x, with @(x) = 0. The Pauli matrices
with the 2-by-2 identity adjoined form a basis of the
split-quaternion algebra.

Thus the hypotheses of this theorem are quite restric-
tive, allowing only seven solutions. The Cayley algebra,
split or not, is the most structured of a very restric-
tive class of algebras. All the other algebras of this
class are familar to physicists.

3. THE MAXWELL EQUATIONS
By way of example, we use the split-Cayley algebra
introduced in the previous section to discuss several
of the equations of classical electromagnetic theory.11
It is convenient to introduce the notation

E, =E B,
in terms of which the Maxwell equations become

v.Eg =p,

VXE, ¥3,E, =+].
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The role of the four -potential, A ,is assumed by the
split-Cayley element @ = (A4; A) Application of the
derivative operator D to @ gives immediately

e =(E,,Z;E, 2),
where
Z =09,¢ — VA,

Thus if the Lorentz gauge condition Z = 0 is assumed,
the role of the electromagnetic field tensor can be as-
signed to the Cayley element m = (E,,0;E_, 0) and this
is “derived” from the potential G by

Application of D to the above equation gives
Dm = J, (22)

where J = (j,p;j,p),and which,in view of Eq.(19) im-
plies that

DD@ =—(V2 —3,,)a =J. (23)

The following relations containing the elements of the
conventional stress-energy tensor can be easily
verified

smmT + mTm) = (E2 + B2)I

and .
t(mmT —mTm) =(E X B,E*B; —E X B, — E*B),

The symbol T denotes the transpose of a Cayley
element.

Thus,from a strictly formal point of view,these funda-

mental relations of electromagnetic theory are realized
on the split-Cayley algebra. In the next section, we ex-

tend these results to the Yang—Mills field, where there

is additional algebraic structure.

4. THE YANG-MILLS FIELD EQUATIONS (B)

In order to discuss the Yang—Mills equations we pro-
ceed, as in the previous section,and in place of the
gauge potentials, I" , introduce the element

(T, T
Y _<I‘ 1"4>' 29

Notice,however,that ¥ is not an element of the split-
Cayley algebra since its “matrix elements”, I" , are
themselves matrices. This additional algebraic struc-
ture distinguishes a non-Abelian gauge field from an
Abelian one. It is characteristic of the Yang—Mills
field.

We adopt the formal multiplication defined by Eq. (14);
the “dot” and “cross” products involved are those suit-
able to matrices as described in the Appendix. We also
adopt the definition of G, although this need not be an
involution. With these conventions established,a
straightforward calculation yields

— Z V+U
D+y =< >,
Yy V_U z

where V and U are defined in Egs.(3) and (4), and where

Z=v,I', =g, +T)r, (25)
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If we adopt the gauge condition, Z = 0,the Yang—-Mills
field tensor is replaced by the element R = (V — U, 0;
V + U, 0). By identifying D + y, acting on the gauge
potential,y, as a covariant Cayley derivative, §, the
field tensor is “derived” from the potential via

oy =R. (26)

Continuing, we differentiate R by calculating

Joa—Jy I—J'
DR =% g I—4J , @n
J+¥ Jy+d

where J,, and J|, are defined by Eqs. (II) and (11),res-
pectlvely Th1s formula can be expressed in a recog-
nizable form by first using Eq. (IIl) to replace J, by

ju—K“,sothat

K,+J, K+J

DR=g—( % "4 (28)
K—J K,—J,

with § = (j;j). The last term in Eq.(28) can be expli-
citly evaluated using the definition of K, and the identity
(A11) from the Appendix. Specifically,we obtain the
relation,

K, +Jy K+J
YR—Ry)T=(* ¢ 7).
K—J K,—Jj
Finally, we can write,
DR +yR — (RTY)T = g. (29)

Recalling the expression for the covariant divergence of
the field tensor,

V.R,, =0,R,, +T R, —R,,T,
we identify the left hand side of Eq.(29) with the co-
variant Cayley derivative of R, and write

o0R = 4. (30)
Thus from the gauge potential,y ,the first covariant
Cayley derivative gives the field tensor

5y =R, (31)

and this formula summarizes the information in Eq. (I),
the definition of R. The second derivative relates the
field to the current

6R = ¢ (32)

and summarizes the information in Eq. (II’). The last
two formulas then are the dynamical equations of the
Yang—Mills field.

5. SUMMARY AND DISCUSSION

The result of the previous sections has been to rewrite
the Yang—-Mills field equations. This has been a purely
formal procedure, but one emphasizing both the alge-
braic and differential-geometric aspects of the gauge
fields. These fields (referred to a basis in the internal
symmetry space) are multicomponent functions of
space-time, I"AB(x) They carry indices which refer to
both the space—tlme geometry and to an internal sym-
metry space. The internal symmetry indices are ab-
sorbed by considering the collection of matrices I,
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w=1,2,3,4. The space—time index, indicating that
these I', are defined on the space tangent to the Minkow-
ski manifold, is absorbed by the split-Cayley algebra.
In this way, the entire collection {I'f;} is compacted into
a single algebraic object y,the gauge field. By intro-
ducing the differential operators & (covariant Cayley
derivative), which act upon these gauge fields, the field
equations are reproduced. Thus, an algebra info which
both space—time and internal symmetry have been
synthesized results. Accompanying this algebra are
differential operators which allow the dynamical equa-
tions of the field to be stated succintly.

In general then,the gauge fields are drawn from the ten-
sor product € ® M, ,of the split-Cayley algebra and the
ring of n-by-n matrices,M,. The full matrix ring is,

of course,too general for physical gauge fields and suit-
able restrictions are imposed upon it. Conventionally
these restrictions require that the gauge fields are in
the Lie algebra of the gauge group. However,it is pos-
sible to limit the gauge fields by means of a different
sort of restriction, namely the requirement that € ® M,
have a given algebraic structure. To illustrate this pos-
sibility we shall examine the requirement that € ® M,
be the Jordan algebra M%. The choice of this example

is motivated by the central role it plays in the work of
Gamba’ and the fact that it is an algebra of unitary
3-by-3 matrices over the split-Cayley algebra.

With this in mind, we shall now examine the condition
that the gauge field algebra is in fact M/§. First, con-
sider objects in the form of Zorn vector-matrices,
but with each entry a 3-by-3 matrix, that is,

)
')/ =
rp
with
p=1ph
r={rg} ={rif7:87,8,

A,B =1,2,3.

This array (of 36 entries) can be rearranged into a 3-by-
3 matrix with split-Cayley matrix elements. Specifically,

Y = {7§}3

where

,,_(ps ré)
YE=\ 4 paf
ry Pz

Now an element of M§ must have the form

A,B =1,2,3,

W, X Y
X w, z |,
Y Z w

where W,,W,,and W3 arerealnumbers; X, Y, and Z are
elements of the split-Cayley algebra with X,Y,and Z
their involutes. Requiring that ¥ have this form implies
r{=r,, TrT’=-T.
These symmetry conditions on the gauge fields opera-
tors suggest that I', is a unitary scalar and tensor
field, while I' is a unitary vector -field. Apparently,
with respect to the unitary symmetry space I'y and I
are orthogonal,i.e.,transverse to each other. We shall
not pursue this topic further here.
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APPENDIX

Here we collect the definitions and some properties of
the T', matrices used in the text. T', ={I';, Ty, '3, Ty}
are four matrices of unspecified dimension; each ele-
ment, I‘“g is a function of the space—time point, x.
These functions are assumed sufficiently differentiable
to allow the commutation of mixed second partial de-
rivatives. From these we define the six matrices.

A,=[Ty,T,], k=1,2,3 (A1)
and

W, = €y I, T, (A2)
So,for example,

w; = [Ty, T3l (A3)

Those vectors with 2 = 1,2,3 are indicated by I',A and
w. Among any two such vectors A and B we define
scalar and vector multiplication

A*B=A,B,,

(A X B)k: Eklm Ale.
The result in both cases is again a matrix. The vector
algebra of such objects is straightforward, care being

taken to account for the fact that the components of
such vectors do not commute.

The following identities are easily checked.

TF'w=w-l, (A4)

FXA+AXT =Tw—wl,. (A5)
The first of the above corresponds to the usual identity
arising from the “exchange of the dot and the cross”.

In a similar manner we can introduce differential
operators 9, and V which act on each element of the
matrices. For any such vector A or scalar ¢

VeA =0 ,4A,,
(VX A)p= €4 3,4 (A6)
(V¢)k =0 k¢'
The familiar relations
Ve(VXA) =0 vV X (V =0
(VXA)=0, Vx(v)=0, A7)

V X (VX A) = V(VeA) — V2A

follow immediately. These relations are used in the
derivation of V and U from the gauge potentials.

The following relations evidence the noncommutivity
of the T';:

Vew = (VX I)eI' — T(V X T, (A8)

VXA=(VL)XT +TXx(Vl, +[I',,VvxXT], (A9)

940 =(8,I)XT + T xa,r. (A10)
From the above equations, together with Eqs.(A2)
through (A4), we derive the identities

Vew =UI' — 'V,

(Al11)

VXA—04w =[,U]-VXIT—TXV.
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This paper is concerned the construction of linear-operator equations for transfer of radiation
taking place on a spherical shell. A complete set of equations is obtained for inhomogeneous,
anisotropically scattering media with internal or external illumination and with an arbitrary
reflecting core. In application, linear-operator equations are reduced to a class of familiar functional
equations. Our general result provides answers to a set of well-known problems in astrophysics.

. INTRODUCTION

In recent years the radiative transfer problem has been
enlarged in scope in two directions. In the field of plane-
tary and stellar atmosphere physics and in the field of
neutron transport, extension of the slab geometry is
needed to take curved surfaces into consideration. This
has led to the study of radiative transfer in spherical
media, by Bellman and Ueno and others.1=25 The other
direction is in the extension of mathematical construc-
tion to a class of linear operators. The resulting theory
gives a simple and unified derivation of many integral-
differential equations for transport problems. Red-
heffer and Wang26=29 have successfully developed the
theory governing the transmission and reflection opera-
tors for microwave and transport problems in slab
geometry.

The problem of radiative transfer in a slab was attacked
by Ambarzumian30 by constructing an auxiliary equa-
tion of the Fredholm type. His method has been develop-
ed and extended by many others.31—34 Later, Chand-
rasekhar35 presented a complete set of integral-differ-
ential equations for the scattering and transmission
functions in a slab, based on the principle of invariance.
His powerful method has been applied and extended to
the problems in plantary and stellar atmospheres,36
The principle of invariance has been applied to many
other transport problems, in rather diversified
fields.37—41 The earliest examples of principles of
invariance are in works of McClelland42 and Schmidt43
dating from early in this century.

Bellman's method of invariant imbedding, originally
developed for a slab, is now being used with spherical
geometry,1.2.44.45 Redheffer's operator equations, based
on star-products, and used o construct a class of gene-
ral transport equations in the slab case, can also be
adopted to spherical geometry. This is done by a proper
interpretation of the meaning of intensities and linear
operators.

We shall construct a rather general linear-operator
equation which governs the specular (directly reduced)
and diffused radiation field. Two classes of problems
are considered, one with external illumination and the
other with internal illumination. When our linear-opera-
tor equations are reduced to functional equations, we
have the results of Bellman and Ueno,1.2.3 Allen, Sham-
pine, and Wing,22 Leong and Sen,24.45 Aronson and
Yarmush,46 and Ueno and Wang.47 From the astro-
physics point of view we have succeeded in solving the
Chandrasekhar problem in a spherical shell, Schuster's
problem in the theory of line formation and the Milne
problem of the diffusion of light from a center star as
special cases.
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Il. INTENSITY AND OPERATIONS

The medium in which the transfer of radiation taking
place has spherical symmetry, and the medium proper-
ties are functions of the distance from the center of
symmetry only. Incident radiation is spherically uni-
form. The medium may be an inhomogeneous spherical
shell of atmosphere which scatters anisotropically, with
radii x andy, 0 < x <y. The intensity in the total radia-
tion field at radius 2, x < z <y, at inclination coslu,

0 <u < 1, to the radius vector directed in the inward
direction is denoted by I(z, —u«) and the intensity in the
outward direction with the inclination cos™lu, 0<u<1,
to the radius vector is I(z,u).

Let the total radiation field in the inward direction at
the outer surface of the spherical shell be I(y, —u),
0 <u < 1. Then the total radiation fields transmitted
and reflected are denoted by I(x,~—v) and I(y, v), see
Fig.1l. The transmitted radiation is composed of two
parts,

I(x,—«v) = II(x,_U) + I*(x,~v), (1)
the specular part (the directly reduced part) and the

diffuse part. However, the reflected radiation field has
the diffuse part only

I(y, U) = 1*(3’,11)- (2)

Viewing Il{x,—v), I*(x,—wv), and I*(y, v) as outputs of a
linear system due to an input I(y, —u), we may write

II(x,—v) = Q'I(y)_u)’

1*(y,‘l)) :P'I(y,—u),

I*(x,—-v) =T ‘I(y;_u)y
@)

where Q, 7, and p are called the specular, transmission,
and reflection operators. The operators have integral
representations with kernels @(x,y,—v, —u), 7(x,y,—v,
—u), and p(x,y, v, —u), respectively. For example,

y Iy ,v)

FIG. 1, Spherical symmetrical shell with incident radiation field L=
I(y,—u) at the outer surface.

Copyright © 1973 by the American Institute of Physics 855
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[ 1y, —0))e,—0) = [* 76,9, —0, )y, ~wdu. (@)

Similarly, if there is an incident radiation field I(x,u)
at x in the outward direction then the corresponding
operators are denoted by P, t, r and their kernels are
P(x,y,v,u), Hx,y,v,u), r(x,y,—v,u), respectively.

1t should be noted that the intensities we defined here
have taken all multiplication of scattering into account.
With the exception that the core is a perfect absorber,
there is multiple scattering taking place between the
core and the spherical shell, This included the case
when the core is a vacuum,. For example, if the core
radiates an amount J; of intensity at the surface in the
outward direction the intensity I(x,v) = (E — K*r)1[,
where K is the reflection operator for the core, (see
Sec.IV). In the slab geometry case, when the slab is
imbedded in a vacuum or anonreflective space, I(x, v) =1,
because there is no multiple scattering taking place be-
tween radiative transfer in a slab and in a spherical
shell. Another distinction is that while an intensity tra-
vels in a straight line in a spherical shell its parameter
u changes with radius, see Fig. 2. In the slab geometry
it remains the same.

11l. TRANSFER OF RADIATION

Let us consider a thin spherical shell with radii z — Az
and z for Az > 0 small. Then the change of the radia-
tion fields with respect to z due to the existence of this
thin spherical shell involves three parts. The first and
second parts are the volume attenuation and the diffu-
sion parts,

a(z)
v

Iz, v) — L2L f_ll plz,v,u) Iz, u)du,
20 0<lvl<1, ()

as in the slab case, where a(z), o(z), and p(z,v,u) are,
respectively, the volume attenuation, scattering coeffi-
cient, and azimuth independent phase function. Intensity
is function of z and v. The change in cosine of the angle
due to the change of radius constitutes the third part,

1 -2 3
Y RO

(See Fig. 2.) The total effect is given by superposition.

For the moment, let us consider the specular part of
the radiation only, i.e., the diffuse part of the contribu-
tion is ignored. The inward specular equation is given
by
Fl _fale) 1 —0v2
32 Iz, —v) = (—-v -

d
'@)II(Z,——U),
xszsy,0<vs1, (7)

This partial differential equation has a general solution
of the form

cos’u

Z

Z+02Z

FIG. 2. Changing of cos lu due to a small change of radius, where u* =
{1 — [z + 82)/z]2Q1 —u)2p/2,
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~Il[z(1 - 02)1/2],

where ¥ is a differentiable function in z and v. In par-
ticular, if the boundary condition at y in the inward
direction is given by 8{v — u), then a particular solution
for (7) is

I{z,—v) = 6(vy — u)e h.5n), (8)
where the optical thickness
hiz,y,u) = Y ﬁd&
Y f" u*(£)

and the superscript * and subscript « are used to denote
the following relationship:

fr=Sulz,x) = [1 —(%)2(1 ~f2)]1/2 \
f*=r*e,x) = [1 —<iz‘.>2(1 _fz)]uz ,

z< x,
We see that, (f4)* = (/") = 1.

Upon substituting the @ defined in (3) into Eq. (7), we
have

9 (z) 1-—02 3
sa- (2152 h)e @

v zv

where the operator Q has kernel @{(z,y, —v,—u). It is
clear that

Qz,y,~v,—u) = 5(vs — u)e .0 (10)
is a solution of Eq. (9) with initial value 6(v — u) as
z =y. Under the integral convention, see Eq. (4),Q acts

as an identity when z =y which agrees with the physics
of the system.

We have chosen a simple case to show the derivation of
the intensity and the operator equations. The solution
for the intensity equation depends on the value of the
incident radiation while the operator equation is inde-
pendent of the incident radiation field. Also it should
be noted that the Dirac delta 6 used in Eq. (10) should
be considered as an operator in the sense of distribu-
tion theory. More precisely, in the integral representa-
tion in Eq, (4), all operators and the Dirac delta are
considered as in the sense of regular distribution, while
the Dirac delta used in (8) is not a well-defined function,

Let us compute the total flux at z, ¥ < z sy with a(z) =
0 in Eq.(9) and . <u < 1,withu2 =1 — (x/y)2. Then

1.1
41rzzf0_£J vxQlz,y, —v,—u) I(y, —u)dvdu

1,1 dv
= 2 —u)Ily,—u) — 4
4nz _/;c_é v —u) Iy, —u) 2o, v wdu

1
= 21rx2f0 wll(y, —u)du.

That is, in the case of a(z) = 0 and u, < u < 1, the total
specular flux is independent of z.

For o < u < u_,the specular part of the intensity will
not reach the area in the spherical shell with radius

less than y, = y(1 —«2)1/2, However, this part of the
intensity is passing through the spherical shell and it
becomes a reflected part (see Fig. 3). In fact,

II(y’v) = 6(1} __u)e_zh(yc,y,u)’ o<u <uc_
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This situation does not appear in the slab case, since

# .= 0. And this situation also holds for a very thin
spherical shell for a somewhat different reason. For
incident intensity with inclination cos™lu, o <u < 1,we
can always choose Az so small that

uzu,=11—[(z — az)/22]}3/2,

In a similar manner, the specular operator equation
for P is

d o alz) , 1—v2 3
a_z-P__<u = %)P (11)

with initial valve
P = E = identity for z = y.

Here the operator P has kernel P(y, z,v,u), and
P(y,z,v*u)=6@* —u)e h(rzw) (12)

is a solution. We shall not discuss the properties of P,
since they are analogs of the properties of @.

IV. MEDIUM COEFFICIENTS

The differential operator-equations for the radiative
transfer may be obtained when the added spherical shell
is very thin, The medium coefficients at y are speci-

fied by behavior of such a thin shell extended from y to

y + Ay where Ay is small. The diffusion coefficients
a*,b” c* and d* are defined as the limits of diffusion
operators p, t, r and 7 associated with the thin shell.
Kernels of a*,b*, ¢*, 4%, can be represented by phase
functions, which we have already used in the previous
section. Phase functions are physical parameters and
are also called differential cross section. In the opera-
tor notation we write

b* a* o p++ P 13
c* d* - % p—+ p++ ’ ( )

where the operator pt has kernel p(y,+v, tu).

To obtain the specular coefficients, we shall consider
the case operators Q and P to be associated with the
same thin spherical shell. Since Q and P involve

6(v+ —u) and 6(v™* — u), the limits of a left-hand and
right-hand specular operators under the composite
operation are somewhat different. For this reason let
us compute two typical cases.

In the first case, we consider the limit of P on the left-
hand side of a composite operation P. That is,

1 1t
Am = (Pep—pl(y,0) = lim o [
X [6(v* — w)ehy+dy.w) — 5(v — w)] plx,y, w, —u)dw

— p2
= - (agy) + 1 y’l)v % p(x’y’v)_u): (14)

where the last equality follows from Eq. (11) and
P(y,y + Ay,—v,—w) = 6(v — w) when Ay — 0,

In the second case we consider the limit of Q on the
right-hand side of a composite operation p * Q. Let us
compute

1
[pQ(y,v) = fo p(x,y,v, —w)d(w s+ — u)e . y+8y,0)dy

= (y_—i—Al)z(_u_> fucp(x,y,v,—w)é(w —u*)dw,
y u*) "o
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Non - penetrated area

FIG. 3. Section of spherical shell with specular part of radiation only,
showing nonpenetrated area.

where u* =u*(y,y + Ay)andu, ={1 —[(y + Ay)/
9]}1/2, From this it follows that by taking the limit,

lim 1
ay-0 AY

[p-Q—p](y,v)

¥
:_j(.) p(x9y’v)_w)

— w2 — w2
y (a(y) _2 _ 1—w? 1—w i)o(w—u*)dwb*:u
w Yy yw? yw dw
— 2 —u2
_(af)_&_l;_zj_j‘__l_;u_ %)p(x,y,u,—u),
y y (15)

where we used Eq. (9) and the fact that for o < u <1,

3 Y
0 =mj0 o(x,y,v,—w)dw —u™*)dw
=P(x,y, U,—W)G(w _._u*)luw;gc
since
2 2
u* =u*(y,y + ay) =[1 — (%) @ -—uz)] xu,
or 0.

In view of (14) and (15) where p is arbitrary, we have

that the specular coefficients at y corresponding to P

and Q are coefficients B and D, and their kernels have
the form

B(y?vru)=—<%y) +1y_—1)v2 5%)6(7)_“))

Dly,—v,—u) = _<af()y) _%— 1 ;uuz 6%>6(v _u(i,s)

with the understanding that B(y, v,u) is used in the left-
hand of a composite operation and D(y, —v,—u) in the
right-hand, signified by superscript ~. In a similar
manner, the operator B and D have kernels

-~ —u2 —2
B(y,v’u) = _<M +E + l—lf___l—u _a._>5(v _u),
u y yu?2 yu  du

D(y,—v,—u) = — (% + 1;—;’2 a%)é(v —w). a7

By (16) and (17), Egs. (9) and (12) can be expressed as

2 p_n.p. (18)

) .
55Q=QD and T
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V. STATE AND LOCAL FORM

With coefficients as constructed in Eqgs. (13), (16), and
{17), one can obtain a complete system of equations
which govern the radiative transfer under consideration.
This is done by Redheffer's method of adding a thin
layer and using the technique of star-products. The
method was developed originally for the slab. Mathe-
matically, the theory is constructed on the class of
linear operators on Hilbert space. Therefore, it can
apply equally well to the spherical shell provided the
meaning of the intensity is understood in the way defined
here, see remarks at the end of the second section. We
take the star-product of the scattering matrix asso-
ciated with radii x andy, 0 <x <y, defined by

S= + s
0 Q r T

with another scattering matrix associated with radii y
andy + Ay, then take the limit as Ay — 0. With the

aide of Egs. (13), (16), {17), and (18), we obtain a set of
operator equations (for more detail, see Ref. 27),

19)

t,=0b+peclt+P)—B-P, (20a)
py=a+bept+ped+p-cp, (20b)
7,= T +Q celt+P), (20¢)
T, =G +Q+(d+cp)—Q-D, (20d)

where the subscript y denotes partial differentiation,
and where the coefficients

Co0-0 oG )

are evaluated at y.

(21)

In the slab case, one will obtain another set of operator-
equations by adding a thin layer at x. There is a remark-
able symmetry between the partial differentiation with

L

I{x,-u)

y I(y,u)

FIG. 4. A section of spherical shell with external illumination.

™

1(x,-u)

T
Y (y,u)

FIG.5. A section of spherical shell with internal illumination.
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respect to y and that with respect to x. However, for the
spherical shell one should not expect complete sym-
metry, since from the physical point of view the shell
being added at y is different from that added at x. This
also can be explained from the mathematical point of
view: under the composite operation the left-hand coef-
ficient is different from the right-hand coefficient, as
discussed in the previous section. However, the theory
of an additional layer and star-products is still valid.
Details are not presented here, we merely state the
result:

—t,=te®G+asr)—P-B, (22a)
—p,=t+P)ra-(r+Q), (22b)
—r,=c+td*r+reb+rearr, (22¢)
—7,=@d+r*a):7—-D+Q, (22d)

withb =B + b* d = D + d* and the coefficients evalu-
ated at x. Equations (20) and (22) are called the sfate
Jorms for a symmetvic sphevical shell. They corres-
pond to the state form for a slab if u* = u4 =« and

v* = v, = v, In this case x and y are slab depth.

Let us consider the intensities on both sides of a thin
spherical shell with radii z and 2 + Az where Az is
small, We have

Iz + Az,v) =P +t) Iz,u) + p-Kz + Az,—u),
Iz,—v)=r-I(z,u) + (Q +7)- Kz + Az,—u),

where operators are associated with the thin spherical
shell, Upon taking the limits as Az — 0 and using coef-
ficients as stated in Eqs. (13), (16), and (17), the follow-
ing linear system is obtained:

3 <I(z,v) ) [(B o) < b* a*)]
== = +
92 \I(z, —v) 0 - —c* —a*
. I{z, v)
<1<z,—v)>'

This intensity-equation is called the local form for a
symmetric spherical shell and all coefficients are
evaluated at z, ¥ < z <y. It is presented in the decom-
posed form, the first term on the right-hand side of Eq.
(23) being the specular part and the second term being
the diffuse part. Using Eq. (21), the above local form

appears identical to that for a slab, with somewhat
different meanings for the coefficients.

(23)

VI. THE REFLECTING CORE PROBLEMS

Let us consider a spherical symmetric shell of atmos-
phere surrounding a reflecting core with a reflection
governed by an operator K. We consider two types of
problems. In problem type a the shell is externally
illuminated; while in problem type b the shell is inter-
nally illuminated. See Figs. 4 and 5, where ] is the
illuminating radiation. These are the fundamental prob-
lems in the theories of the illumination of the sky and
of the planetary illumination.

The basic tasks for problems of type a and b are the
determination of the intensity field at the outside of the
spherical shell in the outward direction, I(y,u), and the
specification of the radiation field, I(x,—u), as seen by
an observer at the surface of the core looking at the
atmosphere.
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Before we proceed with the physical meanings of such
problems, we shall give a discussion of the operator K,
see Eqs. (4) and (5). The precise mathematical mean-
ing of K is that, when there is no spherical shell, it
relates I(x,u) and I(x, —v) by

Hx,u) =K Ix,—v). (24)
When the core is a vacuum, then K = V where V has
kernel 6{v + ) since there is no absorbtion or diffu-
sion taking place, and all incident intensities I(x,u) go
through the core and constitute an output I(x, —u) where
the total flux is preserved (see Sec. 2), but the direction
is reversed. Whereas when a slab is imbedded in a
vacuum, since there is no intensity returning from the
vacuum, we have K = 0 = zero operator. Another case
in a spherical shell K = V occurs when the core is
made of a perfect reflecting material. On the other
hand, if the core is made of a perfect absorbing mate-
rial, such as a perfect black body, then K = 0. Of course
similar situations hold if a slab is imbedded in a per-
fectly reflecting or absorbing material.

Problem type a, when K = 0 corresponds to the “stan-
dard radiative transfer” with spherical symmetry.
When K has kernel K = K(v,u) = Avu, where A is a con-
stant, we have the “Chandrasekhar's problem” with
spherical symmetry. When K = V, we have a problem
of a spherical shell imbedded in a vacuum. We may

_
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view problem type a as a sort of generalized Chand-
rasekhar's problem in a spherically symmetric shell.

In problem type b, when K = 0, we have the “Schuster’'s
problem” in the theory of line formation by a perfectly
absorbing core. When K = Avu we have the problem of
a Lambert reflecting core, which radiates intensities
into the surrounding spherical shell of atmosphere.
When K = V, we have the “Milne's problem” of the diffu-
sion of light from a center star.

We shall attack those two types of problems by con-
structing a single ideal model and take advantage of the
star-product.

Instead of considering a core with given reflection
operator K, we assume that there is another spherical
shell inside of the given one with radii x; and x,
0 <x; <x. This inner shell has scattering matrix

K

ty
1 1

where ¢, is chosen so that £, 'I(xl,v) =L and 7, and v,
are unrestricted. The condition imposed on ¢, is re-
quired only for problem type b. The replacing of a core
by such an inner spherical shell does not alter the re-
sults of our problems,

Using the star-product of S; and S as given by Red-
heffer27 and (E — 7 * K) nonsingular, we have

s ((P +t)*(E—K-r)lt, p+(P+t)-K~(E——r'K)‘1'(Q+'r).> (25)
* = .
1 r, +7,'r*(E—Ker)lty, 7, (E—-r-K\1-@Q+7)
Equation (25) denotes the overall transmission and f
reflection by taking account of multiple scattering. The where
overall reflection at radius y is
TK)=E-—r*K1l+[r +r-K-Q]. (30)
pPK)=p+ P +t) K*(E—-r+K)1-@Q+71), (26)
Thus, the problem of type a is solved for arbitrary K
where ¢, 7,p, and r are solutions of (20) and (22) sub- provided (E — r * K) is nonsingular.
jected to the initial conditions For the problem of type b, we use the fact that the
E 0 intensities at x can be expressed as
S = , whenx =y,
(0 E> Y I(x,—v) =r-Ix,u)
The reflected radiation at ¥ in the outward direction and
due to the incident radiation J; at y is Hx,0) =t I(x,u) + K- Iy, —u) = I + K-y, —u).
I(y,v) = I*(y,0) = p(K) - L, (27)

This result is the desired first part of the answer for
problem of type a. To obtain the remaining part of the
result, we note that the overall transmission at x, due
to the incident radiation I, at y is

T, E—r*K)1-@Q+7) L

Assuming T, is nonsingular (this restruction can be
removed, see Appendix), the total transmissitted inten-
sity at the surface of the core in the inward direction
is given by

x,—v)=(E—-r*K1-@Q+71) 1. (28)
Equation (28) should be separated into two parts, the
specular part and the diffuse part, by

II(X,-—U) = Q.Iir

(29)

*x,—v)=1(K)-I,
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The last equality follows from the construction of S;.
By eliminating I(x, —v), we have

Ix,0)=(E—K-r)1 L. (31)
It follows immediately that

I(y,v) = (P + t)'I(xyu) - (P + t) ¢ (E - K.r)-l'Ii

since there is no incident radiation at y in the inward
direction. Therefore, the specular and diffuse parts at y
in the outward direction are

o(y,v)=P-I,

I*(y,0) = t(K) - I, (32)
where
HE)=[t+P+K*r]*+(E—K-r)? (33)

Equations (32) are the transmitted intensities at y due to
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an incident radiation I, at the surface of the core in the
outward direction. The reflected intensity at x is

Ix,—v) = I"(x,~v) = r " Kx,u) = r(K) - I, (34)
where
rK)=r+(E—-K-r)?, (35)

The initial valves are p(K) = K and zero for t(X), 7(K)
and r(K) at x =y. This statement can be easily checked
by taking the limit as x —»y. It also agrees with the
physics of our system.

Equations (32)-(35) are the desired results for the
problem of type b,

VIl. SPECIAL CASES AND APPLICATIONS

The complete system of operator equations introduced
in previous sections may seem to be unfamiliar and
somewhat abstract. To present them in a more familiar
form and also to give us a partial check of our results
we shall reduce some of the above operator equations
to a set of functional equations. Also a brief discussion
on systems with various reflecting operators K is pre-
sented.

To discuss in more detail the generalized Chandrasek-
har's radiative problem in spherical geometry, the prob-
lem of type a, we assume that the core has an arbitrary
reflecting kernel K(v,u). The conical flux of radiation

of unit intensity per unit area per unit solid angle is
assumed to be spherically uniformly incident on the
outer surface with radius y at inclination cos1lu,

0 <wu =< 1,to the inward-directed radius vector, i.e.,

I =6(v—u).

To obtain the reflection functional equation at y, we let
operators on both sides of Eq. (20c) operate on I, under
our integral convention, see Eq. (4). With the aide of
Egs. (13), (18), and (17), we have

—p2 —u2 2
[_9_+a(y)<1+1)+1 v2 9 1—u _a_~1+u}
9y U v

yv v yu du yu?2

X p(xyy:v: —u)

-1
=‘—;—(p(y,v,—u) + fo by, v, wp(x,y, w,—u)dw +v

. ;
Xfo p(x,y,v,~w)p(y, —w, —u) ‘i}—'”—)

to [ L1 plx,y, v, ~w)p(y, ~w,w’)
Xp(x,y,w’,u)dw’%)ui, (386)
with p = 0 when x = y. Likewise using Eqgs. (10) and
(12), Eq. (26) is reduced to
pK;y,v,—u) = p(y,v,—u) + e 2h(x.2u)(y /x)2
X Wu*) (K, v, —uy) + e hlx3w) fol E(K,v* —w)
x r(x,yr-w,—u)‘—iwﬂ + e hErW (y /x)2 (u/u)
x th(x,y, v,w)k(K, w,—u*)dw

1.1
+_](; j(; t(x,y,v,w)k(K,w,—w’)

dw

X 1(x,y,—w',—u)dw’ ——, (37
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where p(K, x,y,v,—u) is the kernel for p(K), u* =
u*(x,y), usx = ux(x,y) and the resolvent kernel satisfies

k(K,v,—u) = K(v, —u)

1,1
+f0f0 kK, v, ~w)7(x,y,~w,w’)

dw

X K(x1y9w)—u)dw17 (38)

with K(v, —u) as the kernel for K,

The desired intensity at the surface of the spherical
shell of atmosphere in the outward direction is given
by

I*(y,u) = p(K,x,y,v,—u). (39)
The corresponding functional equations for Egs. (204)
and (30) can be obtained by a similar method. They are,
respectively,

(_Q_+a(y)+1—u2 3 _1+u?
3y u yu du yu?2

> T(x,y,—v,—u)

=2 [—1— e hlx.yu) <1>(y,—v*,—u)
2 Vx
1
+f0 Py, —vawlp(x,y, w, —u)dw
1
+ f T(x1y9—v’_w)p(y:"—w’"‘u @'
0 w

1 .1
+f0 fo 7(%,9,—v, —w)p(y,—w,w’)

X p(x,y,w', —u)dw' 4—13} (40)
w

with initial value 7 = 0 when x =y, and
T(K,%,9,—v,—u) = e #5390 (y /x)2(u/u.) KK, —v, —u*)

1
+ fo B(K, ~v,w)T(x,y, —w,—u)dw, (41)

where 7(K, x,y,—v,—u) is the kernel of the operator

7(K). The radiation fields as seen by an observer at

the surface of the core looking at the atmosphere are
given by the following specular and diffuse parts,

I(x,—v) = 6, —u) e hix.y.4) 42)

and

I*(x)_v) = T(K9x’y,_v,_u)' (43)

For the “standard problem” in a spherically symmetric
shell, the core is a perfect absorber K = 0. Then

p(K,x,y,v,—u) = p(xyy’v’ —u)
and
T(K;x’yr'—vy_u) = T(xyy"—vy""u)-

For the case K = V, Eq. (38) reduces to
k(K,v,—u) = 6@ —u) +r(x,y,—v,u)
1
+ fo r(x,y,—v,w0)r(x,y,—w,u)dw + -+, (44)
One may use Egs. (37), (41), and (44) to obtain
o(V,%,y,v,—u) and 7(V, x,y, —v, —u).

For the “Chandrasekhar's problem” in a spherically
symmetric shell, i.e., with K according to Lambert's
law with a constant albeds A,

[K-I(x,—u)]@) = Av '{)1 ul(x, —u)dn (45)
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for any I(x,—u), for all v, 0 <v < 1. The reflected
radiation field is isotropic. By using Neumann's series

K E-—r*K)1=K+K*r*K+Ker*Ker*K+:.-.

and repeating the operation (45) by taking the advantage
of the isotropic property, we obtain

I*(y,v) =p&) I, = p(x,y,v,—u) + (1 /o) AL@)T @),
I*(x,—v) = (K, = (1 /u) AT@) + (A — 1)(y /%)2

X (u/fuy)e kx38),  (46)
where
A=Al — AP,
and
fw) = fol uf (x,y,v,u)du,
. (@7)
flu) = fo vf(x,y,—v,—u)dv.

II*(x,—v) has the same value as in Eq. (42), since it is
independent of K. In summary, the results presented

in Egs. (39), (42), and (43) are the solutions for the gene-
ral spherical shell of atmosphere with an arbitrary
reflecting core and with external illumination. In the
case K given by Lambert's law, we have the Chandrasek-
har's radiation problem in spherical geometry. The
results are presented in Eqgs. (46) and (47). Equations
(46) are identical to these given by Ueno and
others,2.21,22 ypon replacing p, 7,x, and y by (1/v)S,
(1/v)T,y,and x.

As for the problem of type b, with internal illumination,
I = 6(v — u) at x in the outward direction, we shall write
down the functional equations from operator-equations
(20a) and (20b), with the aide of Eqs. (13), (16), (17), and
(18). The result is

o aly) 1-22 2
<3y+ v T % Hx,y,v,u)

: _<y_>[ (y) e-m.y.w(p(y,v,u»

p(x,y,v,—w)p(y, —w,u) i—w)

2

A

1
+f0 Py, v, wit(x,y,w,u)

b

1,1
+ fo p(x,y,v,—w)p(y, —w,w) t(x,y, w, u)dw’ d—u')"-]
(48)
and
i'r(x Y, —v,uU) = x\2(u ~2h(x, 3 W p(y, —vy,u*)
ay E ) ’ y u* y s
-k ) 1 dw
+e x.y,ufo -r(x,y,—v,—w)p(y,—w,u,,)—u;_
1
+ e hE2) [T p(y,~ vy, w) tx,y, w,u)dw
1.1
+.{) ./(; T(x,y,—v,—W)P(y,—W,w')t(x,y,w’,u)
, dw
Xdw' 25 (49)

with initial conditions » = ¢t = 0 at x =y. By using Egs.
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(32) and (33) the specular and transmitted intensities
at v in the outward direction are

II(y, U) = 5(11* _ u) e—-h(x,y,u),
I*(y:’l)) = — [5(1}* —u) — ;(K,Z)*,———u)] e h(x,3,0)
1 -~
+ [ 1y, v,w) kK, w,—u)dw  (50)

where %k(K, —v,u) is the modified resolvent which satis-
fies the equation

E(K,v,~u) = 6@ —w)

1,1
+_{)L K(v,—w)r(x,y,—w,w’)k(V,w,wu)dw'%"-,

where k(V, w, —u) satisfies (38) with K = V or K(v, —u) =
&(v + u). The reflected intensity seen by the observer
on the core surface looking into the atmosphere is, by
Eqgs. (34) and (35),

*x,—v) = ‘{)1 r(x,y,—v,w) kK, w, —u)dw, (51)

For the “Schuster's problem”, the core is an emitter

and a perfect absorber. In this case r(K,x,y,—v,u) =
r(x,y,—v,u) and (K, x,y,v,u) = t(x,y,v,u). For I, =

&(v — u), answers for this problem are given by

I(y,v) = 6w* —u) e "(x.y.m),
1*(y,v) = t(x,y,v,u),
and

I*(x,—v) =7(x,y,~—v,u),

where ¢ and 7 are given by Egs. (48) and (49).

For Milne's problem, kB(K,v,—u) = B(K,v,—u) has the
expression as given in Eq. (44). If , = (v — 1), i.e.,

the core radiates intensities in the normal direction,
This is equivalent to the physical problem of the trans-
fer of light from a central star surrounded by a spheri-
cal planetary nebula. Since incident radiation is normal
to the inner surface of the spherical shell,u =u* = u,
and v = v* = v,.

For K given by Lambert's law, as discussed in the prob-
lems of type a, the output under K is isotropic and K has
kernel Au. All integrations can be easily computed, for
I, = 6(v —u). The results are

H(y,v) = 6™ —u)ehlx.3m)
(y,v) =) L= 1/u) A7),

and

™y,v) =tK) [ = (1/0)At@) + (A — 1)6(@* —u)e rl=.y.u),
where functions 4,7, ¢ are given in Eq. (47).

APPENDIX

For problem type a with external illumination I, the
intensities at both sides of the spherical shell with radii
x and y are related by

Iy,v)=® +t)- Hx,u) +p-I, (A1)
Hx,—v)=rIx,u) + Q+7) 1. (A2)

From Eq. (Al),
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P +t)l(x’u) = I(y,v)—-pli= [p(K) -p]'Ii-

By the results of Eq.(26) and the fact that (P + t) is
not a zero operator, we have
Kx,u)=K+*E—r*K)1@Q+ 7). (A3)

Upon substitution of Eq, (A3) into (A2), using Neumann's
series, we obtain

x,—v)=E—~7r"K1-Q+7)I,

which agrees with Eq. (28).
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Asymptotic solutions of integral equations with a

convolution kernel. |

C. van Trigt
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Homogeneous eigenvalue problems for integral equations with a kernel of the convolution type,
defined on a finite volume in N-dimensional space, are discussed. It is shown that they can be
reduced asymptotically to eigenvalue problems for simpler integral equations. The integral equations
to be derived also yield the asymptotic solution of the inhomogeneous problem for the original

integral equations.

I. INTRODUCTION

In many problems arising in radiative transfer, neutron
transport theory, etc., it is required to solve the follow-
ing homogeneous or inhomogeneous integral equations
for xin L':

f) = [ Kl — x)f (¢)dx’ = s (), (12)
fla)— [ Kl — x)f (¢}’ = g(x). (1b)

In these equations the integration extends over a finite,
half-infinite, or infinite interval L’. In Eq.(1b) g is a
known function defined for x € L', If L’ is the interval
{— 0, + o) or [0, ©), then, under certain conditions to be
imposed on the function K, Eqgs. (1a) and (1b) can be
solved by standard Fourier techniques.! Let L’ be a
finite interval. Suppose that K in Eqs. (1a) and (1b) is

an even and real function of %, belonging to L; (~ o, + ).

Suppose furthermore that its Fourier transform A de-
fined by

R@e) = [ ° e*K(x)dx, (2)

assumes its maximum M >0 at 2 = 0 and only at 2 = 0,
For the sake of simplicity, we shall assume that K has
been normalized such that M can be taken to be equal
to unity. Often K(x — x’) is a probability kernel, giving
the chance that, for instance, a photon or neutron
emitted at x’ will be absorbed at x. In that case, the
chance of being absorbed anywhere is 1 and X(¢ = 0) =
JK(x)dx = 1. Finally, let the behaviour of & (which is
a real and even function of 2) near 2 = 0 be given by
RE)~1—clele, k-0, (3)
for certain values of the real parameters ¢ and a,
0<c,a <ow,

On the basis of these conditions, Widom?2 has obtained
the following results, taking L’ as a finite but large
segment [— L/2,+ L/2].

(i) Consider the solutions of the following eigenvalue
problem for |£] < 1:

70— I k5 - ] nnar = w,r,00),

obtained from Eq. (1a) by introducing & = 2x/L, ¢’ =
2x'/L,— 1< &, ¢ <+ 1, p,=u, f,(¢§) =fGLE). This
eigenvalue problem has a discrete set of eigenvalues
and eigenfunctions for any value of L, labelled by j. For
j fixed, L — o, its solutions approach in mean square
the solutions for [£| < 1 of the eigenvalue problem,

F@E) = /2o, [ KD E, £ @O @ag, @)
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the kernel K () (¢, £') being defined for 0 < a@ < 2 by

2
k@80 = D e max0, £ — &)
I'(a)
sin(an/2) ¢ (E—§)1gg
ey Y21 P2 . (3
T I e

The integral in Eq.(5) has to be interpreted as a prin-
cipal value if £ > ¢/, Widom2 has also derived K () (¢, &)
for @ > 2 by analytic continuation of Eq. (5). In other
words, for j fixed, L — o,

Bjn™ C(%) “)\31(0!)’

fiL ~f® (in mean square),
the A ; (@) and fj(“) being the solutions of
Ma)@ () = [1 K@ (g, g7 &g, 0

(ii) (implicit in the analysis) Consider the following
inhomogeneous problem for [£} < 1:

70 5 [ x5 6~ o) re0ae =0,

If g is sufficiently well behaved, its solution f, approach-
es asymptotically for L — « the function f defined by
the following integral:

76 = (§)° [Tk @6, £ et ae. ®)

The results given above also apply3 if the constant ¢ in
Eq. (3) is replaced by a function F(l£|) which is non-
negative and slowly varying near £ = 0. In that case, ¢
in Eqgs. (4), (6), and (8) is replaced by F(2/L). From
these results, we see that the kernel K (“)(5, £’) defines
an operator which approximates asymptotically the
operator inverse to (I — K), defined by Eqs. (1a) and (1b),
{In obvious notation, / is the identity operator; the inte-
gral operator K corresponds to the kernel 2/2K[(L/2)

(¢ — £)]}. Hence, solving Eq. (1b) has been reduced to a
quadrature [see Eq. (8)], and solving Eq. (1a) to solving
Eq. (7). We may expect that the latter problem is sim-
pler, since K ) (¢, £') is determined not by the full
Fourier transform R » as would be the case with ({ — K)-1,
but by its local properties near £ = 0 only.

However, the expression Eq. (5) is so intricate that we
may wonder whether anything has actually been gained.
There are other difficulties connected with Eq. (5). Since
the original integral operator [in Egs. (1a) and (1b)] is
symmetric, the integral operator with kernel K () (¢, £')

Copyright © 1973 by the American Institute of Physics 863
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is expected to be symmetric also. Though this can be
proved,? it is by no means obvious from Eq. (5). In
some physical situations, the solving of a decay problem
with time variation exp(— (it) can be reduced to solving
an equation like Eq. (1a). It then follows that the eigen-
values p; and hence the A ; must be positive, It is there-
fore reasonable to presume that the integral operator
with kernel K@) (£, £) is positive definite. Again, this
is not obvious from Eq. (5), though it can be proved.2

In this paper three alternative representations of

K () (g, £’} will be derived. The corresponding integral
operator is now easily seen to be symmetric and posi-
tive definite, and the kernel is much less difficult to
handle than K ) (&, ¢’) as defined by Eq. (5). The analog
of this representation is given for the N-dimensional
case, i.e. when we have equations like Egs. (1a) or (1b)
defined on a volume V' = {r(2J x]?)l/2 < L/2}, with a real
convolution kernel dependent on the distance |r — r’}
only.

Integral equations of this type are frequently encoun-
tered in radiative transfer and neutron transport theory.
They describe the transport in a slab, infinite cylinder,
and sphere in the particular cases N = 1, 2, and 3.

Section II is introductory and heuristic. The basic
formulas are derived which are used in Secs. III and IV
for the derivation of the required integral equations.
The results of Sec.II have been derived rigorously by
Widom.3 In Sec. III we deal with the one-dimensional
and in Sec, IV with the N-dimensional cases. The con-
clusions are stated in Sec. V, where the applicability of
the theory in radiative transfer is also discussed. In
Appendix B the equivalence of our representation of
K@ (&, &) and of that given in Eq. (5) will be proved
directly.

1l. BASIC EQUATIONS

Let us consider the following eigenvalue problem of
the convolution type in N-dimensional Euclidean space
Ey:

fr) — fV,(L)K(r —r)f@)dr = uflr),re V(L). (9

In this formula r is the N-dimensional vector (x;, X,
.+., %y}, and dr an N-dimensional volume element
dx,dx,-++dx,. The integration extends over the finite
volume V'(L) = {r, (222, ,%2)1/2 < L/2}. The following
conditions are imposeé on the function K in Eq. (9). If
N =1, K will be a real and even function. ¥ N = 2, it
will be a real function, dependent on |r| only, Further-
more, K will belong to L,(Ey), so that fIK(r) |dr exists,
Here, as in the following, integration over the entire
space is to be understood if the integration sign is not
accompanied by V’. The Fourier transform of K,
denoted by K, is defined as follows:

R&) = [ek TK(r)dr. (10)
Herek = (ky, Ry ..., ky) andk-r =7 % &k x,. Note

=1
that & depends only on% = (Egg 1k]?)l/é. We shall con-

sider only functions K such that R assumes its maxi-
mum for 2 = 0 and only for 2 = 0, and, for simplicity,
we shall take M = 1. Finally, it is required that, for
certain real, nonnegative values of the parameters ¢
and a, K behaves near & = 0 like

Kk) ~1—cke, k-0, (11)
Compare Egs. (9)-(11) for N = 1 with Egs. (1a) through
(3) in the Introduction, and note the analogy. Since the
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kernel K(r — r’) is real and depends on Ir — r’| only

(is even, if N = 1), the corresponding integral opera-

tor is symmetric. It can be proved that, since K belongs
to L{(E}), this integral operator45 is completely con-
tinuous on L,(V’), the space of functions square-inte-
grable on V’(L). Consequently the eigenvalues 1 —

in Eq. (9) are real and discrete. Their only possible
limit point is zero. The eigenfunctions corresponding
to (diﬁferent eigenvalues are mutually orthogonal on
V/(L).4

We are interested in the asymptotic behavior for L —
of the solutions of Eq.(9). In the investigation of this
behavior, it is convenient not to let V(L) increase in-
definitely but to perform a change of variables, so that
the volume can be kept fixed, and to consider the asymp-
totic behavior of the kernel. We introduce y; = 1,9 =
ZT/L; p = (&, §2, veey ‘EN)’ dp = d§1dg, - 'dgNny(p) =
F[(L/2)p], and the volume V = {p, ( N §2)1/2 < 1}, For
p in V Eq. (9) takes the form

70) — (B fK1/2p = 9 olp Mo’ = 0. 12)

The domain of definition of Eq. (12) can be extended to
all p in E, by putting the kernel and f; equal to zero
outside V. We introduce a projection operator P, P
multiplies a function f; with the characteristic function
of V, denoted by P(p). We have

Pf, =P(p)f p)=f,, forallpe V; (13)
=0, forallpd V.
For all p in £y, Eq. (12) becomes
P(p)f(p) — (L/2NP(p)[K[(L/2)(p — p")]
x P(p")f (p")dp’ = uP(P)f (p). (14)

The main intention of the manipulation leading from
Eq. (12) to Eq. (14) is to extend the integration over the
entire space so that Fourier techniques can be easily
applied,

We define the following Fourier transforms:

7.0) = (2m)¥/2 [eik-pP(p)f,(p)dp
= (@n)V/2 [ etkef (p)dp,
P, (k) = (27)N/2 [eik pP(p)dp

= (217)'N/2fveik‘Pdp. (15)
Now multiply both sides of Eq. (14) by (27)-¥/2¢%» and
integrate over all p. The Fourier transform of a pro-
duct of two functions is the convolution of their Fourier
transforms.® The Fourier transform of a convolution

of two functions is the product of their Fourier trans-
forms.6 Using the definitions in Eq. (15), we have

Fuk) — (2m)4/2 (B & — KR (2k'/L)f, (') = . f (k). (16)

Widom3 has proved that, for large L, the solutions of
Eq. (16) approach in mean square the weak solutions of
the equation obtained from Eq. (16) by replacing
R(2k/L) by the first two terms of its asymptotic ex-
pansion for 22/L — 0, given in Eq. (11). Noting that?
F.00) = (2m)¥/2 [P, (k — X')f (k' )ik’ ()
and combining Egs. (16) and (17), we have for j fixed,
L — o0,
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Wy~ c@/L)ex}a),
-?},L ~ fj(oz)

where the A ;(@) are the eigenvalues and the £ are the
weak eigenf{mctions of the eigenvalue problem

(in mean square), (18)

7@ (k) = r(a)(@n) M2 B G — ke’ o fe (k' )dk'. (19)
The crucial problem is therefore to solve Eq. (19).
However, first, we have to specify the space of functions
in which solutions of Eq. (19) are to be found. The solu-
tions of Eq. (14) are among the funtions Pf;, square—
integrable on V. The corresponding functional space is
denoted by L,(V). Their Fourier transforms are
square-integrable and fulfill Eq. (17). This functional
space is designated by L,(V). By a theorem of Titch-
marsh,! there exists a one-to-one correspondence be-
tween the spaces L,(V) and L,(V). Since the conver-
gence of 7, to ) is in mean square,f ) is also in
LZ(V). However, this space of functions is too large.

It is not hard to see that, due to the factor 2'¢, @ > 0,

in Eq.(19), the (symmetric) integral operator corres-

ponding to the kernel (27)-¥/2P, (k — k)&’ is not bounded.

By a theorem of Hellinger and Toeplitz, 8 it cannot be
defined everywhere in L,(V) [i.e., the integral in Eq. (19)
does not exist for all f in L,(V)]. We shall, therefore,
first define a dense subspace of L,(V) on which the
operator has a meaning. On this subspace—which does
not contain the eigenfunctions—we derive a symmetric
and completely continuous operator which is the inverse
of the integral operator with kernel (27)-¥/2P, (k — k') X
k’a, Since this new operator is bounded,A its domain of
definition can be extended to the entire L,(V). It is,
therefore, the inverse of the operator with kernel
(27)-N/2P, (k — ')k’ for all 7 for which the latter can
be defined, and we can formulate the eigenvalue problem
in terms of this new operator.® The operator also fur-
nishes the solution of the inhomogeneous problem

[Eq. (1b) and its analog for general N| if g(r) is suffi-
ciently well behaved. The idea is essentially due to
Widom.3 We shall need explicit expressions for the
function P, (k), Eq. (15). The reader can easily verify
that

By) = @n)2f etkoodp = V25, (20)

where Jy/, denotes a Bessel function of order N/2.

IH. THE ONE-DIMENSIONAL CASE

In the special case N = 1, P,(k,) in Eq. (20) can be ex-
pressed in elementary functions. Substituting the result
in Eq. (19), we have for a fixed value of @ > 0,

ra) f+°° sin(k, — &{)

F@E)=
T T ky—kRy

[kl af Okt )dky.  (21)

In this section, we shall henceforth omit the index 1 in
k, and kl'.AFor N =1, the space L,(V) consists of the

functions f which are quadratically integrable on (— o,
+ ) and obey the one-dimensional version of Eq. (17),

+ 00 in(e — &’ ’S
ey =—f" S0 R ey, (22)

k—Fk

As has been argued at the end of Sec.II, Eq. (21) cannot
apply to all 7 in L,(V) [i.e., the integral does not exist
for all f in L2(V)]2. The purpose of this section is, first,
to find a dense subspace of L,(V) belonging to the do-
main of definition of the integral operator defined by
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Eq. (21). We shall then derive a symmetric and com-
pletely continuous operator, with kernel K @ (&, "),
which is the inverse of that integral operator for all
7 in the subspace, i.e.,

+ 00 sin(k —k') |k l A(k )dk’dk
a '

o k—Fk 7 N

= f(k”).
The operator with kernel R (¢, k') is bounded, and its
domain of definition can thus be extended to the entire
L,(V) by continuity.® For @ in L,(V), the eigenvalue
problem [Eq. (21)] then becomes

1 f+oo R(a)(k",k)f
T ~oo -
(23)

f+ ook(a) (k’ k')f(u) (&")dk' = 7\(0!)_?( oc)(k). (24)
—o0

Define for real values of 0 >0 andn =0,1,...,
8y o) = (0 + 0)1/2p-0g (), (25)

nm(k) is a Bessel function of order » + . Note
that g, , is an entire function of k£, which is even or odd
for n even or odd. The functions g, , are quadratically
integrable, 10 obey Eq. (22),11 and therefore belong to
L,(V). Define also the inner product for some real

7 2 0 and for all f, for which it has a meaning

wherg dJ,

(F&nodr= [ F0E, o) kI20-147dk. (26)
The g, , are orthogonall2 for 7 = 0, i.e.,
(én.oigm,o)r=0 = 6n,m‘ (27)

First we shall take 0 < a <2. Our required subspace
will be the set of functions which are in L,(V), are of
order O(k-2), |k|— o, and which, for a particular value
of ¢ (dependent on @), permit of the expansion

~

Fe) = io Zno®)(F180.0)r-0- (28)

The subspace is designated by L, (29-1(V), The value
of o will be determined below, where it will be seen
that 20 — 1 = @. The expansion Eq. (28) is known as

a Neumann series.13 The conditions to be imposed on
the functions f if they are to belong to fz(“)(V) will be
considered in Appendix A. It will be proved there that
1, (V) is everywhere dense in L,(V). It can easily be
verified that for 0 < a < 2,Z, @) (V) belongs to the do-
main of definition of the operator defined by Eq. (21)—
i.e., the integral converges. The case a > 2 calls for
separate treatment. Again the subspace L, (V) will
consist of functions f which permit of the expansion (28),
but we impose somewhat different conditions on their
behavior for 2 — . This question is further dealt with
in Appendix A. It will be shown there that the expres-
sion for the kernel & (@) (&, k'), which we are now going
to derive for 0 < @ < 2, is actually valid for all @ > 0,

A. The inverse operator
Consider

1

T

~ ~ + Sil’l(k ——k’) -
8 o) [T, B[ bt | F )k dk.
~00 . - 00 k _kl

We may interchange the integrations for 0 < a <2 by
Fubini's theorem. Since the g, _ fulfill Eq.(22), we have
forn=0,1,--- '
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= §n,a(k1,)(§n,c’f)f= a+l-20*

Sum this result over all n, put 20 — 1 = @, and compare
the expression thus obtained with Eq. (28). It is seen

that this expression is equal to f(2”). In other words,

we have derived a representation of thekernel & (&) (%, &),
defined in Eq. (23):

oo

R@ (k') = Z}O &, kg, (&), o=%+1%a. (29)

n=
It will be shown in Appendix A that Eq. (29), derived
for 0 < a <2, is actually valid for all @ > 0, Taking
this for granted, we derive some alternative represen-
tations for R () (¢,k’). The sum in Eq. (29) is remini-
scent of the addition theorem for Bessel functions, 19

~

20.@) = 2001/2T(0) 35 £, [()E, ,E)C2Q).

n=0

(30)

Here w = (k2 — 2kk'C + £'2)V/2, [t] < 1,and Cg(¢) is a
Gegenbauer polynomial,14

From the inequalities10.14

|§n,c(k)| = (n + U)I/Zk”/z'”"r(n + 0+ 1)
and
lcg(®)] < T + 20)/T(20)n!,

it follows that the series in Eq. (30) is absolutely and
uniformly convergent in {. We now multiply both sides
of Eq. (30) by (1 — £2)0-3/2(1 + £), integrate with re-
spect to { from — 1 to + 1, and use the following iden-
tity, which can readily be proved by inductionl5;

[0 €2)0372(1 + ©)CE©E = 71/20(0 — 1/2)/T ().
Equation (29) then takes the form
2-0g-1/2
11/2T (0 — 1/2)
x [0 = €2)93/2(1 + OF, (wldt.

IA{(“)(k,k’) —

In order to calculate the integral, we shall consider for
k k' fixed, s variable,0 < s < 1,

~ -og-1/2
'd—SZOK(“)(Sk,Sk’) :iﬂ-——.—-
ds 720 — 1)

X _'_1_ f+1(1 — £2)9-3/2(1 + §)320§0 o(sw)d§-
ds -1 s

We next resubstitute Eq. (25), defining §0_°(sw). The
differentiation may be carried out under the integral
sign, both s°J (sw),0 =3 + 3o, and its derivative being
continuous in the rectangle 0 < s < 1, e} <1 fora >0.
The result is

d - 9-a/2-1/2
___sl+otK(a) sk,sk’) = ———r
ds (sk, sk') 71/27(a/2)

1
xf_; (1 — €2)/2-1(1 + )s1/2+0/24y1/2-0/2] ,, \ (sw)dE.

The integral is calculated by again using the addition
theorem, Eq. (30}, but now for 0 = /2 — 1/2. We inter-
pret (1 + §) as the sum of two Gegenbauer polynomials
of order n = 0 and » = 1, By applying the orthogonality
relation!4 for these polynomials, we obtain
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;ii Slmk(a)(sk,skf) = (s/2)(kk’)1/2-a/2
s

X[J /2172580 1/2(SR") + Jy0 17058 0 11 f2 (7)),
(31)

The equivalent expressions for 0 < @ < © are therefore,
first Eq. (29) in terms of Bessel functions,

R@k, k") = (k')-/2-1/2

0
x Eo n+a/2+ 12, y2.1/20W, . 0s2,1/2%);
n=
(32a)

secondly, the representation!€ found by integrating
Eq. (31) between 0 and 1,

N 1
K@ @E,k') = [(kk’)llz"’/z/z]j(; SV ay2-1/2(8RW oy2_1/2(sk’)
+ Josnr1/2(E W oz, 175(sk")ds;  (32D)

and thirdly, the expression found by calculating this
integrall® and simplifying with the aid of the recurrence
formulas for Bessel functions,

f{(a)(k’k') - [(kk')l/z—a/Z/z(k —&")]

X [Jasz1/2®W oya1/20") — Jasa1/20) oz, /2%")]
(32¢)

The kernel & @) (&, ') supplies the solution to certain
scattering problems. Its inverse (double) Fourier
transform is also of interest. It is calculated by mul-
tiplying both the left- and right-hand sides of Eq, (23)
by (27)-1/2¢-%"% and integrating over all #”, Parseval's
relation is applied to the integral with respect to 2. We
then have

K(a) (g’ gl) - (Zﬂ)_1[+°°£+me—ik§+ik’g’k(a)(k’kl)dkdkl.

By substituting Eqs. (32a) and (32b) we obtain integrals
which are all standard.17 The result is that K @) (g, ¢') =
0 for |£], 1£'] > 1. For |&l, |£'| < 1 we have, first, the
expression corresponding to Eq. (32a)18:

K((g, 8) = 2: gr (&g, (&), o=}%a+4; (33a)

secondly, the expression corresponding to Eq. (32b):
91-a
T'2(a/2)
@ (s2 — E2P/21(s2 — §'2)W/2-1(s2 + ££')s;

(33b)
and thirdly, a representation obtained from Eq. (33b) by
introducing the new variablew = s2 — 2££/ + £2§/2/52
and identifying the resulting integral as a hypergeome-
tric functionl9:

K@ (g, &) =

xJ,

max(ellerh®

1

2-a (1— £2)v2(1 — g2)o
Ca/2)T(1 + a/2) & — &’

_E2)(1 — g2
X 2F1[5,§a; 1+ia; — a é 1(15,)25 )] . (33¢)

K(a) (ga g’) =

In Eq. (33a) g, ,(¢) is defined as zero for |£/>1 and
agl? )

2a,ol8) = @u) V2 Teimz (k)k

)(n + ¢g)1/2pl4n

= 20-1/21" (i
( 71/2T (n + 20)

(1 — §2)o-1/2C2(8)
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for |£] < 1, where Cg(£) is a Gegenbauer polynomial.
The special case @ = 1 of Eq. (33a) [C1(£) is a Tche-
bicheff polynomial) and of Eq. (33¢)—in the form to be
given in Eq. (35) below—has been previously derived

by Kac and Pollard.20 In Appendix B we shall prove
directly for 0 < a < 2 that Eq. (33a) is equivalent to the
representation given by Widom, Eq. (5).

The integral operator with kernel K @) (£, §’) is obvious-
ly symmetric, It can readily be shown that K @ (g, &)
is continuous everywhere if o > 1. It is also continuous
for £ = £ if 0 < a < 1, but it has a logarithmic singu-
larity for |£ — £’|— 0 if @ = 1 and a singularity of the
type £ — £’{e-1if 0 < @ < 1, Hence, the corresponding
integral operator is completely continuous on Ly(V).5

1t is, therefore, bounded, and its domain of definition can
be extended to the entire L,(V) by continuity. It should
be remembered that, up to now, the domain of definition
of the integral ogerator with kernel K () (¢, k' }—and thus
the one with K @) (£, £')}—was confined to a dense sub-
space (see Appendix A). We shall now prove that the
integral operator is also positive definite. It is suffi-
cient to show this for a set which is dense everywhere
in L,(V). For this purpose we may take the space con-
sisting of all finite and real linear combinations of
Gegenbauer polynomials. Let

1 1
20 * 3.

M
nig) = Z;O a,C3(t), o

Using Eq. (33a) and the orthogonality relation of the
Gegenbauer polynomials,14 we obtain

f_llf_:lh*(iﬂf @ (g, £)h(¢")ds s

220-1; X
= m + o) 1la2 >0,
T2) 2 O

In (£, £') space, the eigenvalue problem, Eq. (24), becomes

1

Ma)f@ (§) = [ K@ (g, &) (&)ag". (34)
The reader is reminded that the solutions of Eq. (34)
provide the asymptotic solutions of the original eigen~
value problem dealt with in Sec. II [see Eqgs. (12) and (18)].

B. Special cases

For some values of a the hypergeometric function in
Eq. (33c) can be expressed in elementary functions. For
example, if o =1,

D ) = L 1opfl— 88 + (L £2)172(1 — §'2)1/2>
KO = l°g(1 — e — (- g2 — g2/’
(35)
The kernel occurs in air foil theory.21
a=2,

K (g, £) = (1 + min(t, £)][1 — max(¢, £)].  (36)

This is the familiar expression for the Green's function
of the diffusion equation in one-dimensional space:
Ad2f/dE2 = — f, with boundary condition f(¢ =+ 1) = 0,
Generally,if a = 21,1 =1,2,..., Eq. (33¢) can be eval-
uated in a closed, though involved, form.

However, it is more interesting to notice that if ¢ = 2/,
Eq. (33c) is the Green's function for the differential
equation Ad2!f/dE2! = (— 1)!f, with boundary conditions
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diffdEi =0, =% 1,=0,1,...,l — 1. A calculation
shows that

K(zl)(g, 5,) = P21—1(£)
+ [(— 1)¥/2(20 — DI — )22 [ — ¢’ .

P,,_,(§) is a polynomial of degree (2] — 1) in &, of course,
with coefficients dependent on {’. Differentiating
P21_1(§) 2] times with respect to £ gives zero, and dif-
ferentiating the second term (2] — 1) times yields a
step function, i.e., (— 1)¥/2 for £ > ¢’ and (— 1)i+1/2
for ¢ < &', I the step function is differentiated again,
we obtain (— 1)!6(¢ — ¢&'), It follows directly from

Eq. {33¢) that the eigenfucntions behave like (1 — £2)¢,
£ — + 1, Hence, the above-mentioned boundary condi-
tions are fulfilled. This proves the statement. Some
integrals of K 1CY (¢, £') have been obtained in the past
by probabilistic arguments without knowledge of the
precise form of the kernel.22

We shall now calculate these for the sake of compari-
son. The zeroth moment of K{(aJ(¢, &) for |£] < 1is
+l (1— g2)o/2
@ (£, £)de! =
f_lK"‘(ﬁyf)dﬁ TaFa)

Finally, the zeroth moment of the second iterate of
KC)(g, ¢') for |§] <1is

(37

1 o+
1 f_llK‘“’(ﬁ’ EK @ (g, £7)dg'ds"
= lim f+°°f+°°eikgk(°‘)(k,k')k("‘)(k’,k”)dk'dk

kr-g "0 “rwo
—a ! 1 1,1 1
T e+ oz)fl s(s? — £2)/2-1,F, (— 3,535 + 3a; s2)ds.

gl (38)

IV. THE N-DIMENSIONAL CASE

It is now our purpose to carry out in N-dimensional
space, N > 2, the procedure described at the end of

Sec. I: namely, to find a dense subspace of L,(V), belong-
ing to the domain of definition of the integral operator
with kernel (2m)-¥/2P, (k — k’)k’* [see Eq. (19)], and then
to derive on this subspace its symmetric and completely
continuous inverse with kernel X (k, k’). For all 7

in this subspace, K {*’ (k, k’) by definition satisfies the
equation

(20)-/2 [R{® (", k) [Py O — K)o’ oF (i’ )ik’ dk = F (k")

(39)
The domain of definition of the integral operator with
kernel R (k,k’) can be extended to the entire L ,(V).
The eigenvalue problem then becomes

SR (e, K7 ()’ = A (@)F ) (k). (40)

The reader is reminded that in all these equations k and
k’ are N-dimensional vectors. The N-dimensional
volume element is dk = 2¥-1dk d2(k,), where dQ(k,) is a
surface element of the unit hypersphere Q(k,) in N-
dimensional space. The unit vector pointing in the direc-
tion of a certain vector is denoted by adding the sub-
script e. For instance, k, = k/k.

A. Preliminary calculations

We evaluate some integrals that are required below:

(2n)-N/2 fk-og,  (sk)GN/2-1(k” -k )e K pdk
= F,(k,,p, s)P(p/s),
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2(N/2)-0 pm
F (k" ,p,s) = i
e 019 = To+1-N/32)  smwo
x(s2 — pZ)U—(N/Z)GfrVnIZ—l(klel 'Pe)’
GN/2-1(k” -k ) = T(N/2 — 1)(m + N/2 — 1)C¥/2-1(k" -k ),
(p/s) =1, p/s <1, (1)
=0, p/s>1,

In Eq. (41) 0 is a real number, 0 >N/2—1, m =0,
1,...,s is a real variable, s > 0; C¥/2 is a Gegenbauer
polynomial; k” is a fixed unit vector. In the case N = 2

we define G,,%/2-1 as the limit for N — 2 of its defining
relation, using

HmI'(N/2 — 1)0m + N/2 — 1)ch/2-1
=2 cosme, m =1,
=1, m=90,

{cosp)

The proof of Eq. (41) runs as follows. First, the ab-
solutely and uniformly convergent seriesl®

o0
etk'p = N/2-1 Z)

(pk)1- (N/Z)Jl N/2- l(pk)GN/Z 1k, p, )

is substituted in the left-hand side of Eq. (41).
the orthogonality relation23

By using

fQGI;’,/2-1(kg k,)GV/2-1(k, - p,)d(k,)
= 2rN/25  GN/2-l(k,-p,), (42)
the result then becomes

= §mpl-N/2GN/2-1(k"+ p )

X foaokN/z'OJm o(SFM . (72)-1 (kPR
The integral is a well-known Hankel transform and
Eq. (41) follows directly from this.24

It can be verified that Eq. (41) also holds true for N =1,
all inner products (k” -k,), etc., being defined as 1.

Another integral for 0 < s < 1 is

@n) N2 [pog  (sk)GY/2-1(k” -k,)P, k — k')dk

=k g (skGY2-1(k] - K,).  (43)

Equation (43) states that the function 2-°J,,, ,(sk) x
G¥/2-1(k” -k,) does not “see” the projection operator
for 0 < s 1 The proof is simple. Obviously, the left-
hand side of Eq. (43) is the inverse Fourier transform
of its Fourier transform. Furthermore, it is a convolu-
tion. Hence, its Fourier transform is the product of
the Fourier transforms of k97, ,(sk)G (M2 -1(k” -k )
and P, (). The first is given in Eq (41) "and the second
is P(p) see Eqgs. (13) and (15). The left-hand side of
Eq. (43) is therefore equal to

(27)-N/2 [e-ik’ o F, (1, p, s)P(p/s)P(p)dp. (44)

If0 < s <1, P(p/s)P(p) = P(p/s). Therefore, for

0 < s < 1 the expression in Eq. (44) is just the inverse
Fourier transform of the right-hand side of Eq. (41).
Hence, Eq. (43) follows. Equation (43) is also valid for
N = 1, all inner products (k” -k,), etc., being defined as
1. We shall not need the 1ntegra1 in Eq. (43) for s = 1.
The following relation is a direct consequence of Eq
(43):
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o0
EO GN/2-1(k! - k) = 20/25(k” — K/,). (45)
m-

Finally, we shall need Hankel's theorem,25 which is
valid v{ith appropriate conditions imposed on § and with
T>— B
~ Ll ~
Bl") = [7 (sk”)/2T (k") [~ (sk)J, (sk")g(k")dR"ds. o)
6
We shall now derive & 1306) (k,k’ ), and during the course
of the proof we shall define the required dense subspace
2.§2(V) of Z,(V). In order to demonstrate clearly the
essential pomt in the proof, stripped of the nonessential
complications introduced by the geometry, the one-
dimensional result is rederived, It will be seen that the

new method of proof almost invariably carries over to
the N-dimensional case.

B. The one-dimensional case reconsidered

Surprisingly, it can be verified directly that f{(“)(k, k")
given by Eq. (32b) fulfills Eq. (23). Consider first for
0= % + %a:

k"o 1 +
27 o STl T hea(ok)

x f Pk — k') |k |2 (&")dk’ dkds.
By Eq. (43) this becomes

”- 1 + ~
B2 ) sTo (k) [T D (kR0 (k! [aF (e )k ds

1 o0 -
= ko [Tsd o (sk") [ T, (sk! e’ TF (k" )dk'ds.  (47)

Here f, (') = [7(®’) + (= k')]/2. Note that k- oJ (sk)
is an even functlon of k. We have assumed that the in-
tegrations with respect to £ and 2’ may be interchanged,
a matter wh1ch w111 be considered further below. Now
if for ¢ = — £ + fo the integral
f0°°J°(sk')k'(a-o)ﬂ(k')dk' =0, s>1, (48)
then in Eq. (47) the integration with respect to s may be
extended to 1nf1mty By Hankel's theorem [Eq. (46)],
taking 7 =0 >—§ and g(k’) = k" @27 (k’), the result is
just f+( ’). Replacing J by J,, in all these formulas,
and noting that 2-9J, 1(sk) is an odd function of &, it
can similarly be proved that the result is f ") =
[f") — f(—k")]/2. Because f=7, + 7, we have there-
fore verified directly that & ) (g, 2’) is given by
Eq. (32b). Hankel's theorem is not applicable to all
functions in L (V). But there exists a dense subspace
of L2(V) belongmg to the domain of definition of the
operator with kernel (27)- 1/2P1(k — k')k’® on which it
holds true, Eq. (48) is fulfilled, and the interchange of
mtegratlons leading to Eq. (47) is allowed. This sub-
space turns out to be T (“)(V) introduced in Sec.III and
studied in Appendix A.

C. Derivation of the NV-dimensional case
Consider foro =4N—1+ 4o andform =0,1,2,.,.
1

k/’_a ” - 7
s do S Tmio (58 VJBod,,, o (sk)GH/2 1 (] - k,)

x [P, —k )k’ *f & )dk'dkds. (49)

By Eq. {43) the expression becomes
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sd, . _(sk")

m+a

1
k I/-of(;
X [pr o)y (sk’)GN/2-1(k" -k, )f (k')dk’ ds, (50)

again assuming that the interchange of integrations is
allowed. Now if for 0 = {N — 1 + L& and for all m, the
integral

f”k,N—Ha—oJ
0

m+o

(ok) [ /21 kL K, P O ), e

=0, s>1, (51)
then in Eq. (50) the integration with respect to s may be
extended to infinity. Application of Eq. (46) yields, for
m=0,1,...,

= [ G210y X, )f ek, )a k., ). (52)
Now sum Eq. (49)—and hence Eqgs. (50) and (52)—over all
m and apply Eq. (45). The result is precisely 2ni/2f (k).
Comparing this with Eq. (39), we see that K, ) (k, k')
has been derived, namely,
(kk')-c

RN(OL) (k, k') YT

x 1
X 25 GY2 Uk, K,) [ S, oSk, o(sk))ds.  (83a)

m=0

The defining relation for G %/2)-1 in Eq. (41) is now
resubstituted. The expression can be somewhat sim~-
plified with the aid of a relation for the Gegenbauer
polynomials and by calculating the integral in Eq. (53a).26
We then have

k(u)(k’k') = I"(_N/2)_ (kR')-N/2-a/2 37 (m + AN + La)
N ﬂN/2 0 2 2

X C%/z(ke .k,e)Jm+N/2+ a/2(k)Jm+N/2+ a/2(k,)' (53b)

Equation (53b) is also valid for N = 1,k, -k} being de-
fined as 1. Since C,1/2(1) = 1, Eq. (53b) then reduces

21-«a
r2(a/2)

T(N/2) 1
/2

K&“)(P;P') = ma x (o, p ")

and secondly, a representation obtained from Eq. (54a)
by introducing the new variablew = 52 — 2p-p’ + p2p’2/
s2 and identifying the resulting integral as a hyper-
geometric function,19

Z-aI‘(N/z)(l _ pz)a/2(1 — plz)a/z

I'a/2)T(1 + a/2)n¥/2|p — p’' |V

(1—p2)(1— p’z)}
lp—p’ 2 )

K$(p,p’) =

(54b)

X 2F1l:§N,%a; 1+ ta; —

By comparing Eqs. (54a) and (54b) with Egs. (33b) and
(33c), we see that they are also valid in the case N = 1,
the inner product 2p- p’ being defined as 2£¢£/,

It is clear that the operator with kernel K, (p, p’) is
symmetric. It is also completely continuous on L,(V),
by essentially the same argumentsS as those given in
Sec.III for the one-dimensional case. Hence, it is
bounded and its domain of definition can be extended to
the entire L,(V) by continuity. In ordinary space, the
eigenvalue problem [Eq. (40)] takes the form

Ma)f (@ (p) = [ K§(p,p')f (= (p)dp’ (55)
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to Eq. (32a). The series in Eq. (53b) can by summed in
the (uninteresting) case @ = 0, N = 1 by the addition
theorem for Bessel functions [Eq. (30)]. By Eq. (20) the
result is (27)-¥/2P, (k — k'), which is as it should be.
The calculations leading to Eq. (53) are formal and
cannot be justified for all fin Z,(V). However, there
again exists a dense subspace 1,(®(V), belonging to
the domain of definition of the operator with kernel
(2m)-¥/2P, (k — k') k'@, such that for fin L (V) Han-
kel's theorem may be applied, Eq. (51) is valid, and the
interchange of integrations in Eq. (49) can be justified.
The discussion of this problem is given in Appendix A,
The kernel & () (k,k’) is transformed to ordinary

(p, p’) space by multiplying Eq. (39) by (27)-%/2¢-%k""p,
integrating over all k”, and applying Parseval's relation
to the integral with respect to k. We then have

K (p,p') = (1) [[e-ikp+ik' o R (0 (k, k')dk dk’.

By substituting Eq. (53a), taking 0 = tN — 1 + 1a, inter-
changing the summation and integrations, 27 and carry-
ing out the integrations with the aid of Eq. {(41), we find
that K (p,p’) = 0 for p, p’ > 1 and that for p, p’ < 1,
a >0,

K(cx)( )y = —2__1-01_ __1__. io) GN/2-1(p < p’)
N PP} = FZ(U/Z) ﬂN/Z 0 m pe pe
1 A\ m
2 _ p2)o/2-1(g2 — p'2)o/2-1 (PPN ™ 3-A-
x fmax(p,p') (s P ) (s p ) <32> S ods.

The summation is carried out by the following genera-
ting function, 28 valid for pp’/s2 < 1:

2 (PP\ m N/2-1 . p’
Z-:o ® G2 e, p,)
" §2N-4(s4 — p2p’2)

(s4— 2s2p-p’ + p2p'2)N/2

= T'(N/2)

We thus have K, (p,p’) = 0 for p,p’ > 1, and for
p, p’ <1 first the representation

(s4 — p2p’2)ds
(s¢— 2s2p-p' + p2p'2)V/2’

(54a)

The solutions of Eq. (55) provide the asymptotic solu-
tions of the original eigenvalue problem, Eq. (12).

D. Special cases

In a number of cases the hypergeometric function in
Eq. (54b) can be expressed in elementary functions. The
most interesting cases seem to be the following,

First, N=2, p= (£, &,), a = 2;
kP (p,p’) = (1/2n)logl(p/p) — pp’| — loglp —p’l].

This is the well-known expression for the Green's func-
tion of the two-dimensional diffusion equation

a2

2 ¢ 92 R
AVZf:A<a§2 +_>f=_fa pinV,
1

2t3

with boundary condition f(p = 1) = 0, by which, of
course, f is uniquely determined. Generally, take N = 2
and @ = 2], [ =1,2,---, A straightforward calculation
then shows that
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K2V (p,p') =Py, ,(p)
+ 22-2(— 1)“1/1"2(1)] lp —p 121-2K§2)(p,p’).

Py, 5(p) is a polynomial in &, and £, (with coefficients
dependent on p’), the sum of their degrees being at most
2] — 2. It vanishes upon application of (V3)!. Because
vilp —p'(21-2 = 22(] — 1)2]p — p’ |22-4, if the second
term is operated on (I — 1) times by V3, we obtain

(— 1)*+1K 2 (p,p’). Again, operating with V3§ gives a
6-function. Hence,for 1 =1,2,..., K£9(p,p’) is the
Green's function of the elliptic partial differential
equation A(V3)!f = (— 1)!f, with boundary condition 9fi-1/
pi1=0,j=1,...,1, atp=1,

IN= 3, p= (51’52’ §3)9 a = 2’.
K@ (p,p") = (/4n){lp—p'1-1 — l(p/p— pp’|-1].

This is the familiar expression for the Green's function
of the three-dimensional diffusion equation

awgr=a(22 e 2 L BN o iy
(66% 33 66%) ’ ’
with boundary condition f(p = 1) = 0. The reader will
have no difficulty in proving that for ¢ = 21, 1 =1,
2,..., K520 (p, p’) is the Green's function of the ellip-
tic partial differential equation A (VZ){f = (— 1)!f, Com-
pare these results with their analogues in the one-
dimensional case dealt with in Sec. IIl. These Green's
functions for @ = 2 provide the solutions of the inhomo-
geneous Laplace equations in two- and three~-dimension-
al space. This is in accordance with the statement made
at the end of Sec. II that the kernels X, (p, p’) supply
the asymptotic solution of the inhomogeneous problem
for the integral equations dealt with.

Finally, we shall calculate some integrals for p < 1
which have been obtained in the literature by probabi-
listic arguments, without knowledge of the precise form
of the kernel22;

2-2T'(IN)
TGN + $0)T(1 + 20)

SLES (p,p')dp" = (1 —p2)*/2, (56)
S JE$ (0,0 )K 00", p")dp'dp”
__ a2-2aI2(N)
T2(3N + $a)T2(1 + ia)

1
X [“s(s2 — p2)2-1 F (AN,~ La;iN + La; s2)ds.
P
(57
In certain problems in radiative transfer, Eq. (56) is of
interest because it occurs in the calculation of the mean
_number of scatterings which a photon undergoes before
leaving the volume V.

V. SUMMARY AND CONCLUSIONS

The results obtained in the foregoing sections are also
valid under slightly more general assumptions3 relating
to the behavior of the Fourier transform K (k) in Eq. (11).
They are included in the following recapitulation.

Theorem I. Let M > 0, and let the following integral
equations be defined for p = (§4,...,£,) in V=
{p (DE EPV2 < 1N =1,2,...:

(A) Mf,(p) — (L/2)¥ [ K[(L/2)(p — p")]f, (0")dp’
= U LfL(p);
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(B) Mf,(p)~— (L/Z)NfVK[(L/Z)(P —p)]f(p")dp’ = g(p).

Let the following Fourier transform assume its maxi-
mum M for |k|= 0 and only for |k| =0, and let

Rk) = [e*-rK(r)dr ~ M — ¢ |k| «F(|k|); [k| > 0,
for certain real, nonnegative constants ¢ and «. F(|kl)
is a nonnegative slowly varying function of |k| near |k|
= 0. Then, in the case of problem (A) for L — w0, fixed,

IJ'j',L ~ C(Z/L)QA;I(Q)F(Z/L),

f;.1~ £ (in mean square),

where the functions £ and the numbers x j(@) are the
solutions of the eigenvalue problem for p in V:

Ma)f @ (p) = LK p,p')f @ (p")dp’,
with

2-aT(N/2)(1 — p2)v/2(1 — p'2)e/2
T(a/2)T(1 + a/2)m¥/2|p — p’ |¥

Na o 1—p2)1 —p’2
x2F1[7,§;1 +7;—( Iz—)—(p’lzp )}.

sta) (p’ p,) =

The solution of the inhomogeneous problem (B) for a
sufficiently well-behaved g is asymptotically for L —» o

Fu0) ~ f(p) = [ K (p,p")g(p)dp.

A brief comment on the application of these results in
radiative transfer and neutron transport theory might
be useful. Suppose that the medium is inhomogeneous
and source-free, that the scattering is isotropic and
conservative, and that the problem is time-independent.
The equation of radiative transfer is then2?

8-vI, (x,8) + 2, (r,s)
= (1/411ffP(V, v, (r, 8)dQ(s’)dv’,

with, of course, appropriate boundary conditions added.
Here 8-V is the directional derivative and all other quan-
tities have their common meaning. Suppose first that
P(v,v’) = 6(v — v")k(v’') (‘grey” approximation). As

is well-known, the equation can then be transformed into
an integral equation of the type dealt with in Sec.II. The
Fourier transform of the kernel is of the type of Eq. (11)
with o = 2, It follows that at large optical thickness,
the problem can be described by the diffusion approxi-
mation. This has already bheen known for a long time.
Suppose, however, that P(y, v’) is separable, i.e., P(v, v’)
= L)k (v'), as is the case in good approximation in

the theory of radiative transfer in a spectral line.30
Then, again, the transport equation can be converted
into an integral equation of the type considered in Sec.
II. Again, the Fourier transform of the kernel is of the
type of Eq. (11), but now with 0 < & < 1. The application
of the results of this paper in that case has been given
elsewhere 31
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APPENDIX A
1. The one-dimensional case

Our purpose is to investigate the conditions to be im-
posed on functions f in L,(V) in order that they belong
to the subspace Zz (V) for 0 <a <2, i.e., the space
of functions f which are O(2-2), & — «», and can be
written as

f<k>=io(ﬁé,.,o»:oﬁ".o(k), o=1+ia. (A1)

We introduce the even and odd parts of £ f,(k) =

[f®&) + F(—%))/2 and f (k) = [ f k) — F(= %))/ 2. By sub-
stituting the defining relations of g, , [Eq. (25)] and of
the inner product, Eq. (A1), in terms of 7, and ., takes
the more familiar form

f+(k) = 2k i (2n + 0.)J2n+c!f°0 klc—lJZn +a(k’)f+(k’)dk,’
n=0 o (A2)

7(k) = 20 f}o @0+ 1+ 00y, .0
x foook”“'lJZn+1+o(k’)f_(k’)dk’. (A3)

The requirements for Eqs. (A2) and (A3) to apply are
similar. We therefore deal only with Eq. (A2), Suffi-
cient conditions for Eq. (A2) to hold true have been
given by Wilkins,13 They are: (i) 7, is continuous:
(ii) £, (k) = O(k-2/2), k — «0; and (iii) [see also Eq. (48)]
the following integral exists and has the property
BT asa-1/2(sk k1 1/24002F (R1)ak" =0, s> 1. (A4)
Condition (ii) is weaker than the requirement 7, (k) =
0(k-2). We replace it by the latter. Then also the inte-
gral in Eq. (A4) will exist, We now show that these con-~
ditions are met if the following demands are imposed

on the inverse Fourier transform f, of f+, related by

7.(k) = (2m)172 f_:‘ cos(kE) £, (£)dE.

They are, for 0 < a <2, f,(1) = 0;f, is differentiable
and its derivative is absolutely continuous, In that case,
ﬂ is continuous—condition (i), By partial integration

of Eq. (A5) and application of theRiemann-Lebesque
theorem,32 it is readily shown that 7, (¢) = O(k-2),

k - o—condition (ii). The result of the partial integra-
tion is substituted in Eq. (A4). Upon application of
Fubini's theorem, condition (iii) becomes

(A5)

L FUO [T 1o (RIR/2V/2 sinGeg)dbdt =0, s > 1.

The integral with respect to # is well known.33 It is
equal to zero for 0 < [¢] < s, 0 < @ < 2. Therefore,
condition (iii) is also fulfilled. Note that explicit use
has been made of the fact that f, vanishes outside [— 1,
+ 1]. The set of functions f, is dense in L,(V), for
among them are the solutions of the diffusion equation
with boundary condition f.(1) =0. They constitute a
complete set. Hence, L, (V) is dense in L,(V). The
arguments for 0 < o < 2 can readily be extended to
other values of @. For instance, take 2 < a < 3. We
now impose of f, that f,_is two times differentiable,
that f,(1) = /(1) = 0, and that f” is absolutely contin-
uous. It is easily verified that then,again,Eq.(A2) applies
and that 7, (k) = O(£-3), so that the set belongs to the
domain of definition of the operator with kernel
(2m)-1/2P (¢ — k') |’ |%, @ < 3. The set is of course
dense in L,(V). The reader will also have no difficulty
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in verifying that in the rederivation of the one-dimension-
al result in Sec.IVB our conditions on f+ ensure in addi-
tion that Hankel's theorem is valid and that the inter-
change of the integrations is justified.

2. The N-dimensional case

In the case N > 2, 0 < a <2, we shall define the space
I ) (V) as the set of (i) continuous functions f which
are (ii) O(k-¥/2-3/2), k — 0, and (iii) have the property
that the following integral (which exists) vanishes for
s>1,m=0,1,--+, 0 =4N—1+ }a:

«© ? I
L s o (R PN/ 2 4 a2
x J GY2-1(k, k) 7' )ag k,)dk’ =0,

It is easily verified in Sec. IVC, that L, (V) belongs to
the domain of definition of the operator with kernel
(27)-%/2P\(k — ')k’ that Hankel's theorem is valid,
and that the interchange of integrations in Eq. (49) is
justified. To f,z(“)(V) there corresponds a space

L) (V) of functions f related to 7 by

70&) = (2m)¥/2 [ e-ef (p)dp.

We shall show that the above~mentioned requirements
imposed onfare met if certain smoothness conditions
are fulfilled for f. We first consider only complex func-
tions f which can be written as the following finite sum:

7P =23 a1, (P (p,).

s > 1. (A6)

(AT)

(A8)

The real radial function f, (p) in Eq. (A8) will be con-
sidered below; Y} (p,) is a complex surface harmonic

of degree n in (N — 1) variables34;! stands for an array
of indices I = (I;,...,ly_,). The summation with re-
spect to ! is over all independent surface harmonics of
degree n. For instance,if N = 2, Yi(p) =eile, [=xn.
EN=3, Y:(8,¢)=(—1)r+120n! e-ilePl (coss)/(n + 1)1,
1=0,x1,.,.,tn.

By substituting in Eq. (A7) the expansion of e k¢ given
under Eq.(41) and Eq. (A8), and by calculating the inte-
grals with respect to the angular variables with the
aid of an orthogonality relation35 for the surface har-
monics, we have

f&) = b1-N/2 Z: an.lin lez (ke)
n,l

1
Xfo Jn +(N/2)—1(kp)pN/2fn (P)dP- (Ag)

We require for 0 < @ < 2 that £, (1) = 0, that p=f, (p) is
differentiable, and that its derivative is absolutely con-
tinuous. Then fis continuous—condition (i). Partial
integration of Eq. (A9) yields

f&)=—k¥23a, i Yk,
n,i
xfol T, a0 V2 d% [pf, (p)]dp.  (A10)

Substitution of the familiar asymptotic expression for
J, . ny2(kp), k — o, and application of the Riemann—
Lebesgue theorem32 shows that f (k) = O(e-¥/2-3/2),

k — co—condition (ii). Now substitute Eq.(A10) in Eq.
(A6). The angular integrals are readily evaluated35 by
an orthogonality relation for the surface harmonics.

For s > 1 condition (iii) takes the form

znulz[; @y, yzm(ke)] imfolpmm/z %[mem(p)]
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o]
X T e o(SI oy, o (k0)e2dRdp = 0, s >1,
if the sum over 7z contains m. If this is not the case,
then the left-hand side of this equation is zero, and con-
dition (iii) is fulfilled. The integral with respect to & is
a familiar Hankel transform.36 The result vanishes for
0 <p.<s, 0 <a <2, Hence, condition (iii) is met.
The finite linear combinations of functions f,(p)¥%(p,),
with the above-mentioned conditions imposed on £, (p),
are dense in L,(V). Among them are the solutions of
the diffusion equation in N-dimensional space with
boundary condition f,(1) = 0. They constitute a com-
plete set. Hence, L %) (V) is dense in Z,(v). The analy-
sis can be extended to o > 2 in complete analogy with
the one-dimensional case. This is left to the reader.

APPENDIX B

The purpose of this appendix is to prove directly the
equivalence of the representation of K (®) (¢, £’) given
in Eq. (5) with the form given in Eq, (33a). Our starting
point is Eq. (5) valid for |£, | &1 <1,0 <o <2,¢ = ¢’
f0<asxi,

cos(an/2)
T{a)
_ sinlan/2) (| §’2)a/2f§ (-9t d¢
7T(a) -1 (1 - £2)/2 £ ¢

K@(g, ¢) = [& — & |2 max(0, £ — ¢')

. (B1)

As has been mentioned already, the integral in Eq. (B1)
has to be interpreted as a principal value if &€ > ¢’.
Equation (B1) may also be written as

K@ (g &) = RJM (1 — ¢72)e/2
nT(a)
£ (5—0“_1 P oy _ r:'.
Xf-ldc(l_gz)a/z [C—E’ b — &')|;

P denotes principal value and 6(¢ — ¢’) the common &
function. We replace the principal value and the § func-
tion by using the representation (0 = ie, € > 0)

P/(§— &) —ind(— &) =—i [ expli(C +i0 — &)s)ds.

Equation (B1) thus becomes

. " gia(n/2) 1 pr2yesa [* (£ —¢)o-1
K@) (g &) Rem‘( £'2) f_ldc(l_cz)a/z

x jo " exp[i(t + i0 — &')slds. (B2)

By Cauchy's theorem, Eq. (B2) is equivalent to Eq. (B1)
if the eigenfunction f(‘” (¢) is analytic in a neighborhood
of the part of the line Im £ =0, |¢] < 1.

In Eq. (B2), consider first

eialn/2)

e b SRR T 10— £)slds.

We use the following expansion,1© which is uniformly
convergent for [£/] < 1 in any closed domain in the
(complex) s plane.
e-ik's = g-1/2-a/291/2+a/2 I"(% + %a)
o0
X 2 (il + 3+ 3a)CY/2+ W2(E)d, 1/, ar2(8)-
=0
" (B3)
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Upon substitution of Eq. (B3) and interchange of the
summation and integration, we have to calculate10.37

egion/2 . 0 i
Tomas C I e O, 1 os)

9n-1/2~0/2 n!
(€ +i0)p+1l+a P(n + 3/2 + a/2)

s-1/2-a/24g

= jeiar

n+l+a n+2+a 3 o
X oF n o+ =+ = +i0-2}
21[ 2 ] 9 ’ 2 2,(§ )

=<_2_>1/2 nl ieino/2
m M{n+1+a)[(+i0)2—1]o/4

O,?ﬁzafz (C + ZO);

Q%/2,/,(¢ + i0) is a Legendre function of the second kind.37
The result is

(lei“c(;‘;i)/z fo°°ei(z+io-z ) sds
__ ieHn/Daglias2 1‘<l— . a> i (n+1/2 + a/2)n!
11/2[( +30)2 — 1]/4 "\ 2/5%0 T T(n 1 1+ a)

X CH/2+a/2(£7) Q2 /p (§ + 40). (B4)
We now take the real part of Eq. (B4)—See Eq. (B2). The
Gegenbauer polynomial is real, while the Legendre func-
tion Qg{za/z is complex. Furthermore, the latter is
somewhat difficult to handle. We therefore transform it
to the Legendre functions of the first kind37 Pg/2 ,, and
P,%/2,,, which are easier:

je-ian/4
(1 —¢2)a/d

jetan/4

ieia‘n’/z
(€ +i0)2 — 1]a/a

QY2 (5 +40) = (— 1)n+1

/2 =T (___ 1)n+1

X Qn +a/2( c ZO) 2 (1 — §2)a/4 sin(aﬂ/z)
X [P,f‘ﬁza/z(—C — i0)— M;—,H—a) P2, ¢ — iO)].
' (B5)

The appropriate hypergeometric equations are substi-
tuted for the Legendre functions of the first kind in
Eq. (B5). Since the hypergeometric functions take real
values for real values of the argument, we can easily
separate off the real part. We have37

Refietan/2/ [(¢ +i02 — 1]o/4) Q2 (¢ + i0)2
= 4n[(— 1)*/T(1 — a/2)](1 + ¢)-o/2
X yFy(~n—3a,n+1+30;1—3a;301 + ). (B6)
We reconsider Eq. (B2), substitute Eq. (B4), and inter-

change the summation and integration. Each term of
the series is equal to

2192 L 1g)(1 — gr2)er

71/2
x[(n+%+5am!/T(n+ 1+ a)lcl/2+a/2(¢’)
multiplied by
jeita/2
e_.
7['(a)

X [E (5 — 0= 108/2/(€ + i0) -

[(€ +40)2 — 1]o/e’

(B7)
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By applying Eq. (B6), the integral becomes

1 1) f€ (6§ —¢)=t
2 r(e)f1—a/2)™1 (1 + §)v/2

o a a1+§>
x Fl—n—2n+1+%1-9 dt
z 1< 2’ 2’7 2’ 2

(1 + g)osz < o a a 1+g>
2 — KRt—n——n+t1l+—1+—;
ra+a/2f? 2’ 2’ 27 2
9-n-(a/2)-1 dn
O(n + 1+ a/2) den

1 n
=§(— 1)

:(———1”

(1 _— €2)n+a/2.

By Rodrigues' formula38 the last expression is pre-
cisely

9a/2-1
7l/2

I'(1/2 + a/2) n!
r

(1 — t2)/201/2+a/
(n+1+cv)(1 §2)erzC a2 E).

(B8)
Taking together the results of Eqs. (B7) and (B8), we have

K@ (£, ) = (2¢/m)T2( + 3a)(1 — £2)/2(1 — §r2)/2

> 1oy P2+ 1) apeaayol/eeo/z(gr
8 nZ=>0 (n + A za) I'2(n+1+ o) Cn (g)c” ((gB)g')

Therefore, the equivalence of Egs. (5) and (33a) for

0 < o < 2 has been established directly. The justifica-
tion of the interchange of summation and integration
leading to Eq. (B7) appear to present no difficulties for
any i0 = i€, € >0,because,in that case, the series in
Eq. (B4) turns out to be uniformly convergent. However,
the passage to the limit € — 0, as tacitly done above, is
justified for 0 < a < 1 only if £ = &',

Obviously, the analytic continuation2 of K @) (&, £’) in
Eq. (Bl) to Rex > 2 coincides with the expression in
Eq. (B8), since the latter is an analytic function of o for
£,£" fixed,Rea >0 (£ = £’ if 0 < Rea < 1),

IE. C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Clarendon, Oxford, 1948).

’H. Widom, Trans. Am. Math. Soc. 98, 430 (1961); Trans. Am. Math.
Soc. 100, 252 (1961). In the latter paper, in Eq. (6) read |x —yj*~2
instead of |x — y[*~!, See also: M. Kac, Proc. of the Sec. Berkeley
Symp. on Math. Statistics and Probability, edited by J. Neyman
(University of California Press, Berkely, (1951); H. Kesten, Illinois
J. Math. 5, 267 (1961).

SH. Widom, Trans. Am. Math. Soc. 106, 391 (1963).

°F. Riesz and B. Sz-Nagy, Leéons d’analyse fonctionelle (Académie des
Sciences de Hongrie, Budapest, 1955).

SA kernel 4 (r,r') defined on a measurable, bounded set U in
N -dimensional space, such that fr—r1" ~24 (r,r'),8 >0, is bounded on
U, is sometimes called- a kernel with a weak singularity. For a proof
that the corresponding integral operator is completely continuous on
L ,(U), see S. G. Mikhlin, Mathematical Physics (North-Holland,
Amsterdam, 1970). In this reference it is also shown that the integral
operator is completely continuous on C(U), the space of continuous
functions on U. It follows that the eigenfunctions are continuous.
Consequently, if K(r) in L ,(E y) is bounded everywhere except at
r =0, where it has a singularity of the type mentioned above, then the
integral operator in Eq. (9) is completely continuous on L (V). If
K (r—r’) has also other singularities, it can be approximated by
kernels of this type, and is therefore also completely continuous on
L ,(V"). It can also be shown by a direct argument that if K (r) is in
L ((E y), the integral operator is completely continuous on C(¥").

1. Sneddon, Fourier Transforms (McGraw-Hill, New York, 1951).

"Proof: Eq. (17) is in operator notation f= P = f, where * ‘means
convolution; by applying inverse Fourier transformation we obtain
Pf=Pf; this is an elementary identity for P.

8Reference 4, p. 293.

%In particular, the domain of definition of the inverse operator
comprises the set of functions for which Eq. (19) can be defined only
in the weak sense. The weak eigenfunctions of Eq. (19) are

J. Math. Phys., Vol. 14, No. 7, July 1973

eigenfunctions in the usual sense of the completely continuous inverse
operator.

G, N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge U. P., Cambridge, 1966).

YA, Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables
of Integral Transforms (McGraw-Hill, New York, 1954), Vol II, p.
345 (44). The formula holds true for odd values of » too.

2A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher
Transcendental Functions (McGraw-Hill, New York, 1953), Vol. II,
p- 64.

3], E. Wilkins Jr., Trans. Am. Math. Soc. 64, 359 (1948); Trans. Am.
Math. Soc. 69, 55 (1950).

YG. Szegd, Orthogonal Polynomials, AMS Colloquium Publications,
Vol. XXIII (Am. Math. Soc., Providence, 1939).

15The identity is easily seen to apply for # =0 and # =1 and for all
positive a. Consider the equation for » +1, n > 1. Use Ref. 12, Vol.
IL, p. 175 (15) to remove in the integral the polynomial — and apply
the orthogonality relation, Ref. 11, Vol. I, p. 281 (8). The derivative
of the nth order polynomial is removed by Ref. 12, Vol. II, p. 176
(23). Apply now the induction hypothesis.

16The equivalence of Egs. (32a) and (32b) is of basic importance in the
theory of Neuman series; see Ref. 13. The present proof seems to be
new and is much simpler than the one in Ref. 13.

Reference 11, Vol. I, pp. 44, 100.

8We have to prove that the integration and summation may be
interchanged. Because of finite interval, it is easier to justify the
reverse case, namely that K(k,k’) in Eq. (32a) is the Fourier
transform of K'*'(¢,¢') in Eq. (33a). It is proved further on in the
paper that Eq. (33a) is singular at £=¢§' for 0 <a < 1. Therefore we
take first a > 1. By Ref. 14, p. 197, the series in Eq. (33a) is
uniformly convergent for |, || <1, and thus bounded everywhere. If
it is multiplied by (2n)*/2¢~/*'¢'| then the integration with respect to
may be interchanged with the summation. The resulting series is
absolutely and uniformly convergent by the inequalities under Eq.
(30), In the Fourier transformation the summation and integration
with respect to £ may be interchanged. The result is analytically
continued to a >0, £54¢', the sum being an analytic function of « for
Rea >0, £#¢&'. The justification of Eq. (33b) is similar.

YReference 12, Vol. I, p. 59.

M. Kac and H. Pollard, Can. J. Math. 2, 375 (1950).

2H. Séhngen, Math. Z. 45, 245 (1939).

2], Elliott, Ill. J. Math. 3, 200 (1959); R. K. Getoor, Trans. Am.
Math. Soc. 101, 75 (1961). Equations (38) and (57) should be
multiplied by 2 to be comparable.

BReference 12, Vol. II, p. 245. The case N =2 requires separate
verification.

Z4Reference 11, Vol. II, p. 48.

ZReference 12, Vol. II, p. 73.

2Differentiate ref. 12, Vol. II, p. 176 (26) in order to split up Eq. (53a)
into the difference of two series. Calculate the integral and apply two
times the recursion relation in Ref. 12, Vol. II, p. 12 (56).

¥The justification is essentially the same as that given for the
one-dimensional case; see Ref. 18.

BUse Ref. 12, Vol 11, p. 176 (26), differentiated with respect to x, in
order to reduce this formula to the more familiar generating function
of Ref. 12, Vol. II, p. 177 (29).

8. Chandrasekhar, Radiative Transfer (Dover, New York, 1960); B.
Davidson, Neutron Transport Theory (Clarendon, Oxford, 1958); K.
M. Case and P. F. Zweifel, Linear Transport Theory
(Addison-Wesley, Reading, Mass., 1967).

3This Markof assumption has been introduced by T. Holstein, Phys.
Rev. 72, 1212 (1947); Phys. Rev. 83, 1159 (1951), and by L. M.
Biberman, Zh. Eksp. Teor. Fiz. 17, 416 (1947); Zh. Eksp. Teor. Fiz.
19, 584 (1949).

31C. van Trigt, Phys. Rev. 181, 97 (1969); Phys. Rev. A 1, 1298 (1970);
Phys. Rev. A 4, 1303 (1971).

3E. T. Whitaker and G. N. Watson, 4 Course of Modern Analysis
(Cambridge U. P., Cambridge, 1962), p. 172.

BReference 11, Vol. I, p. 100.

3Reference 12, Vol. II, p. 240. The case N =2 requires separate
verification.

3Reference 12, Vol. II, p. 247.

¥Reference 11, Vol. II, p. 48.

3"Reference 12, Vol. I, Chap. 3.

#Reference 12, Vol. I1, p. 175.



A space-time calculus based on pairs of null directions*

R. Geroch

Department of Physics, University of Chicago, Chicago, Illinois 60637

A. Held

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

R. Penrose

Department of Mathematics, Birkbeck College, London, England

(Received 21 July 1972)

A formalism is presented for the treatment of space-times, which is intermediate between a fully covariant
approach and the spin-coefficient method of Newman and Penrose. With the present formalism, a pair of
null directions only, rather than an entire null tetrad, is singled out at each point. The concept of a spin- and
boost-weighted quantity is defined, the formalism operating entirely with such quantities. This entails the
introduction of modified differentiation operators, one of which represents a natural extension of the
definition of the operator © which had been introduced earlier by Newman and Penrose. For suitable
problems, the present formalism should lead to considerable simplifications over that achieved by the

standard spin-coefficient method.

1. INTRODUCTION

Certain types of calculation in general relativity are
conveniently carried our using a tetrad formalism?:
four vector fields are introduced which are linearly inde-
pendent at each point. By taking components with respect
to these vector fields any tensor field or tensor equa-
tion may be replaced by a system of scalar fields or
scalar equations. In fact, ordinary calculations using
tensor components according to some coordinate sys-
tem are really a special case, since here we may use
the gradients of the four scalar fields x0, x1, x2, x3 as
the (covariant) tetrad vectors. (We should be careful
to distinguish an actual tensor from its set of components
in some coordinate or tetrad system.) For definiteness
we shall adopt the “abstract index” conventions? accord-
ing to which y_, ¢, denotes a tensor whereas x ;¢ de-
denotes its set of components in a tetrad or coordinate
system.3 For example, a single vector field £, may be
described in terms of four scalar fields &, &4, &5, &3,
where £, = § 0¢, the tetrad system being denoted by
68, 64,84, 64. Similarly, a tensor equation such as
V(2€s) = 0, for example, can be replaced, using this
tetrad system, by the ten separate scalar equations

Ve = Taprkes (1.1)
where Vv,, V,,V,, V5 are the tetrad components (“intrin-
sic derivatives”) V¥, = 62V, of the covariant derivative
operator V_ and where

Tgp =— 0260V,05. (1.2)
Here, the dual tetrad &5 = 69, 61, 62, 63, of 62, is being
employed (defined by 646¢ = 6%, that is, 696§ is unity if
a =0 and zero otherwise). For a general tetrad there
will be 64 algebraically unrelated scalar fields I'fy. In
the case of tetrads arising from coordinate systems we
have the symmetry I'$y = Iy} (Christoffel symbol sym-
metry), and we have just 40 algebraically unrelated
scalar fields I' ;. On the other hand, if the tetrads are
normalized according to some scheme:

62008 .4 =& (1.3)
where the g, are constants, being the elements of some
numerical symmetric matrix [e.g., diag(l,— 1,— 1,— 1)
for an orthonormal tetrad in a locally Minkowskian space],
then we have the skew-symmetry
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gcbracb :—gcarbcb' (1.4)
Thus we have only 24 independent scalar fields. These
are called Ricci rotation coefficients (sometimes writ-
ten y(lcb ).

Since tetrad equations such as (1.1) are scalar equations,
theorems on the existence and uniqueness of differen-
tial equations can be used directly. With a normalized
tetrad, we have only 24 I''s so we may expect some
simplification over the use of coordinate components,
Also, if one wishes to solve the gravitational equations
explicitly, it is sometimes convenient to introduce nor-
malized tetrads. Occasionally the equations become
more transparent when written in terms of normalized
tetrads. This may be the case when one or more of the
vectors is preferred, for example, when a tetrad vector
is chosen to be a Killing vector or, say, a multiple prin-
cipal null vector of the Weyl tensor. But often equations
become more difficult to interpret when written out ex-
plicitly in terms of tetrads. In the completely covariant
formalism, every expression has a definite interpretation
(in principle, at least) in terms of the geometry of the
space—time, while in an explicit tetrad formalism, many
of the equations are simply expressing relations be-
tween (perhaps arbitrarily chosen) tetrad vectors.

The spin-coefficient formalism? (referred to hence-
forth as the NP formalism) may be regarded, in the
present context, as arising from a special case of a
normalized tetrad formalism. As a consequence, there
are 24 independent rotation coefficients; but it turns
out that these may be combined in pairs to give just 12
independent complex scalar fields called spin coeffi-
cients. Real equations combine together in a natural
way and it becomes a feasible proposition to assign a
different letter to each spin coefficient and write out
all equations explicitly in terms of components.

A common feature, then of the spin coefficient and tetrad
formalisms is that they both involve a choice of a com-
plete tetrad at each point. Often this choice has to be
made arbitrarily to some extent since the geometry of
the situation may not define that much structure at each
point in a natural way. However, in many problems
there may be some smaller amount of structure natural-
ly singled out at each point. In particular, it is frequent-
ly the case that, say, one or two vectors or directions
are naturally defined at each point, but not four vectors.
In radiation problems, or when one is dealing with space-
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like (or timelike) 2-surfaces, it is often the case that two
(or one) null directions are singled out at each point by
the conditions of the problem. The formalism that we
set forth in this paper is designed specifically to deal
with such situations.

We suppose that two of our future-pointing null directions
are assigned at each point of the space-time. We can
then choose, as two of our tetrad vectors, two null vec-
tors 14 and #n¢ which point in these two directions. We
can choose a normalization /%2, = 1 and take our re-
maining tetrad vectors to be unit spacelike vectors X¢
and Y ¢ orthogonal to each of ¢ and n¢ and to each other.
However, there is a two-dimensional “gauge” freedom
remaining at each point, namely the 2-parameter sub-
group of the Lorentz group at each point which pre-
serves these two null directions. This group is generat-
ed by the boosts

le>yle, ne—yrlipe (1.5)
and the spatial rotations
me— etoma, (1.6)

where the complex vector m ¢ is defined by m ¢ =
2-1/2( Xe + {Ye), It is convenient to combine 7 and ¢
together in the form of the complex number A where A2
= 7 ei®, Then the “gauge group” at each point is seen
to be the multiplicative group of complex numbers A.
Our formalism will deal with scalars associated with
such a tetrad (I¢,m2, 7 %, n*) where the scalars undergo
transformations®
n— APX47 (1.7)
whenever the tetrad is changed according to (1.5) and
(1.6). Such a scalar will be called a spin- and boost-
weighted scalar of type {p,q} (or simply a scalar of type
{p,q}). The spin-weight is 3(p — q) and the boost weight
is 3(p + q).
The formalism may be though of as a compromise be-
tween the fully covariant formalism and the spin coeffi-
cient formalism. It exhibits, to a certain extent, the
advantages (and some disadvantages) of each. The use
of indices is avoided; equations frequently have direct
geometrical interpretations. Since the space—times
considered in practice often have one or two null direc-
tions singled out, it is hoped that the modification of the
spin-coefficient formalism considered here will serve
as a useful computational tool.

2. THE FORMALISM

Let 04 and (4 be a pair of spinor fields on the space~-
time normalized according to
o,h=1, (2.1)

Such a pair of spinor fields is called a dyad or spin
Sframe. It is well known? that any dyad defines a unique
null tetrad (¢, me, 7%, n%) at each point and, conversely,
that any null tetrad defines a dyad uniquely up to sign.
The relationship is as follows3:

a — oAaA" mae = OAIA,

me = (Ao, ne = (A7A,

(2.2)

This is clearly unaffected by the replacement (04, (4)

— (— 04,— 14), [A choice of null tetrad is equivalent to

a choice of orthonormal tetrad. Canonically, we can set
Te = 2-1/2(1a + na), Xe = 2-1/2(pma+ jma), Y& = — 2-1/2
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(me — m9),and Z¢ = 2-1/2(]¢ — ¢) to define an ortho-
normal tetrad.] The twelve spin coefficients and their
relation to the Ricei rotation coeefficients for the null
tetrad are as follows4:

= gApA’ =mbd
040 oBVAA,oB—mlaValb,

fi

ATA oB —
041408V 0, =mbmeav 1,

K
Y
p = A0~ 0BV 0, = mdmev,i,,

T = 1414089, ,,0, =mbnav i, 5

K =— LATA'LBVAA,LBzﬁbn“Vanb, (2.3)
0! = — LADA 1BV Ly = OMEV, 1,
P =— 0MA BV 1 = WO meV 0y,
T

' = — 0ADA' BY 1, = mb1eV,n,
and

= TA! =1 m
B =0ATA BV 0, = Hndmav I, —m® mav m,),

B' =— LADA 0BV 1, = 3(IPmMav,n, — mbmav,m,),
— o0AQA’ (B = L(pbja — b ]a
€ = 0404 BV 0, = 3(nb18V I, —m? 19V m,),
- L _
€ =— (A LA'OBVAA/LB = E( lbnavanb — mbnavamb).
(2.4)

The above notation differs from that originally given
by Newman and Penrose in that we have used only six
different Greek letters rather than twelve. The use of
primed letters brings out the close relation between six
of the spin coefficients and the remaining six. The other
six Greek symbols of the NP formalism are related to
ours by
v=—k,

A=—0, p=—p,

TT:_T’: oz:—ﬁ’, ’V:—GI- (2.5)

We shall make use of the prime systematically here to
denote the operation of effecting the replacement:

04— {14, 1A 04, 04— — T4, (A — o4, (2.6)

so that

(1) =me, (me) =wme, (me) =me, (ne) =]l
2.7

This preserves the normalization (2. 1) and the relation-

ship between a quantity and its complex conjugate. Since

the bar and prime operations commute, one can write

n’ without ambiguity. Furthermore the prime operation

is involutory up to sign:
(') = (= 1)p+ay, (2.7a)

(For all quantities explicitly defined in this paper, p +

g is in fact even, so this sign will play no role here.)

This use of the prime not only halves the number of

Greek letters needed, but also effectively halves the num-
ber of equations.®

The role of the (vector) covariant derivative operator
V, is taken over in the NP formalism by four scalar
operators:

D =0404'V,, =19V, D' = 4TAV , =n4V,

d=0ATAVY, ,=maV,, T =0 =1404V,,=m2V,.
(2.8)

Tensor or spinor equations on the space~time can now

be written out explicitly in terms of the components with
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respect to the null tetrad or the dyad, and the spin coeffi-
cients (2. 3), (2, 4), and the derivative operators (2. 8).

So far this is just standard NP formalism. The innova-
tion that we shall introduce here, however, is to work en-
tirely with spin- and boost—weighted quantities, since
these are the quantities which are apropriately “co-
variant” under the group of tetrad transformations which
leave the two null directions of /% and #n¢ invariant. Now
the most general spin transformation which leaves these
two null directions invariant [preserving the normaliza-
tion (2.1)] is

04— A04, LA aliA (2.9)
where X is an arbitrary (nowehere vanishing) complex
scalar field. In terms of the null tetrad, the transforma-
tion (2. 9) takes the form

12522, me—>aAx-lmae,

me - A 1Am®, ne- A X-lpe, (2.10)
These are just the transformations (1.5) and (1. 6) con-

sidered earlier.

Recall that a scalar 7 of type {p, ¢} was to be a scalar
quantity which transformed according to
n = APX47, 2.11)
whenever the dyad (04, 4) transformed according to
(2.9) or, equivalently, whenever the null tetrad (¢, m?,
¢, n%) transformed according to (2. 10). Strictly speak-
ing, we should think of % as a function which assgigns a
complex scalar field n{(o4, 1) to each ordered normalized
pair of spinor fields o4, (4, for which the null directions
defined by o4 and by (4 are the given pair of null direc-
tions. Alternatively, we can think of n as a function of
the null tetrad. In any case, to be a proper spin- and
boost-weighted quantity, the function 7 must be of a very
special type, namely one which satisfies (2. 11) when the
dyad or null tetrad is changed according to (2.9) or
(2.10),i.e. n(xo4, A-114) = xPX4n(04, 14). (Note that we
may regard o4 and 4, themselves as spinors of type
{1, 0} and {— 1, 0}, respectively, and 12,m 2,72, n% as vec-
tors of type {1, 1}, {1,—~1},{— 1,1} and {~ 1,— 1}, respec-
tively.) -

The spin coefficients may now be divided into two class-
es according to whether or not they are proper spin-
and boost-weighted quantities. In fact, the spin coeffi-
cients in the list (2. 3) are all such quantities whereas
those in the list (2,4) are not. Let us illustrate this with
two examples:

0 = 0AR-1TA) 0BV , 4(ro ) = A3X-1o, (2.12a)
but
B - (oA (X-1TA)(A-1(B)V , ,(x0p)
=AX-18 + X" 1oATA VY, L. (2.12D)

The types of the spin- and boost-weighted quantities
(2. 3) are as follows:

K:{3’ 1})0:{3’_ 1}, p:{lﬁ 1}, 7:'{1’_ 1} 3
K':{'— 3a_ 1},0’:{_ 3: 1}:9':{_ 1’_ 1}1 TI:{"' 1’ 1}'

With any spinor field or tensor field on the space-time
there is associated a collection of spin- and boost~

(2.13)
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weighted scalars of various types {p, ¢} which together
define the spinor or tensor. These are obtained from
the spinor by transvecting with the various combinations
of 04, 14,04, and 14 or the tensor with the various com-
binations of 1¢,m ¢, m 4, and n% Any tensor field, may, in
fact, be interpreted as a spinor field if desired; but we
get precisely the same set of scalars whichever way we
do it because of the definition (2, 2) of the null tetrad in
terms of the dyad.

Evidently the product of a scalar of type {p, g} with a
scalar of type {u, v} is a scalar of type {p + u,q + v}.
On the other hand, sums are allowed only when the sum-
mands have the same type. The type of the sum is the
same as that of each summand.

We next wish to introduce derivative operators into the
formalism, Unfortunately the operators (2.8) of the NP
formalism are not suitable for this purpose, for, when
applied to a scalar of type {p, q}, with p, g not both zero,
they do not in general produce a spin- and boost-weight-
ed scalar. We, therefore, modify the derivative opera-
tors (2. 8) by the inclusion of further terms involving

the spin coefficients in the list (2.4). For 7 of type {p, q}
we define”.8

= (D +pe + g€,
&'n= (6’ +pp’ — gB)n.

bn = (D — pe — g¥)y,
5y = (6 —pB + 4B’ ),

These combination have been so chosen that, under (2.9),
the terms involving derivatives of A cancel exactly. It
should be noted that these operators are derivations, that
is they are linear, and when operating on products, they
satisfy the Leibniz rule. The operator & as defined here
reduces, in the appropriate circumstances, to that of
Newman and Penroge.%10 The spin weights of the opera-
tors (2. 14) are as follows:

A1, 1},
b’;{_ 1: - 1}:

(2.14)

6:{1: - l}:

(2.15)
1,1}
(To say that a differential operator has type {p, g} is to
say that when acting on a scalar of type {u, v} it produces
a scalar of type {p + u,q + v}.)

Alternatively the operators may be defined in terms of
the type {0, 0} operator (acting on a quantity of type {p, q}
={r +s,7—s}

eAAIZ VAA’—_pLBVAA'OB_th'VAABB'

=V, —rntv 1, + smbv,m, (2.14a)

by the equation

@, =1,V +n,b—m,5 —m,0 (2. 14b)

In Eq.(2. 14a), s and 7 are the spin and boost weights,
respectively [cf. following 1.7)]. The original definitions
(2. 14) may be recovered by transvecting (2. 14b) with 79,
n¢, me and m 9.

Since we wish to operate only with quantities with a
well-defined {p, g}, we are not able to use the spin coeffi-
cients in the list (2.4) directly. Instead, the role of
these spin coefficients is to be found within the defini-
tions of the operators (2. 14).

The basic quantities with which we shall work are the
eight spin coefficients «,0,p, 7;k’,0’,p’, 7’ and the four
differential operators D, 8, b/, §’; In addition, there is the
operation of complex conjugation. We may also con-
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sider the prime as effectively an allowable operation on
the system. With the introduction of various tensor or
spinor fields, such as the electromagnetic field tensor

or Riemann tensor, we shall be able to combine the above
elements with the tetrad components of the tensor fields
and the dyad components of the spinor fields to obtain

a self-contained calculus.

The effect of the derivative operators (2.14) is shown

in Fig.1. We associate with a scalar 7 of type {p, g},

the point with coordinates {p, ¢} in the plane. Each of

the derivative operators (2.14) has a characteristic
effect on the type, which can be represented as a dis-
placement in this diagram. Note that when two elements
are multiplied together this corresponds to a vector sum
in the diagram. If two elements are to be added together,
then they must be represented by the same point in the
diagram. The operation of complex conjugation is rep-
resented by a reflection in the line p = g, since the com-
plex conjugate of an element of type {p, g} is an element
of typel8 {g,p}. We define, in fact,

B=>, 5=9, o =25 (2.16)

Then the operation of complex conjugation will satisfy

by =37, n=on. (2.17)
Finally, the prime operation is represented in the dia-
gram by a reflection in the origin, since if we prime an
element of type {p, ¢} we get an element of type {— p,— q}-
The prime will commute with addition, multiplication,
and complex conjugation [but note (2. 7a)]. Furthermore,
we have
(&n)’ =¥'n', (¥'n) =on.
(2.18)
The various spin-coefficient formulae will now be given
explicitly in the form allowable within our present for-
malism. As an example, consider Eq. (4. 2k) of Ref. 4:

(En) =27, (¥'n)’ =27,

op — 6'c =pB—7B') +o +38")

+7lp—p) +k(p’—p')— ¥y + &, (2.19)
Rewriting (2.19) as
(6—B+PB)p— (8" +38" +Bo

=@—pT+ @ —plk—¥ +&, (2.20)

and noting that p and ¢ are types {1, 1} and {3, — 1}, re-
spectively, we see that the equation may be reexpressed,
using (2. 14) as

p—do=(p—p)t+ @ —plk—¥ +&,. (2.21)

Similarly, Eqs. (4. 2a), (4. 2b), (4. 2¢), (4. 2p). and (4. 2q) of
Ref.4 may be rewritten as

bp — 8k =p2 + 00 — KT — 7'k + B, (2.22)

Do — Bk =ofp + p) — k(T + T') + ¥, (2.23)

pr— Dk =plr—7)+0(T—7) + ¥, + &,,, (2.24)

BT — Do =—p'c —0'p + 12 + KK' + B, (2.25)
and

Pp—8'T=pp' +co’' — 7T — Kk’ — ¥y, —2A. (2.26)

Applying the prime operation to each of these six equa-
tions, we obtain six more equations, these being equiva-
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lent to (4.2m), (4. 2n), (4. 2j), (4. 2i), (4. 2g), and (4. 2h) of
Ref. 4, respectively. We recall the definitions of the
dyad components of the Weyl spinor ¥, ., and the
trace-free Ricei spinor

$

ABC'D"

¥, = 04080C0P¥ o =¥, {4,0},

¥, = 04080C 0¥, .0 = ¥y {2,0},

¥, = 04080 0¥, =¥," {0,0}, (2.27)

T3 =0MBOP Y, 0= {—2,0},

Yy = tABLCPY , 0= ¥y {—4,0}

@00 = 04050405'd 5,15 = 500 =%5, {2,2}

By = 04BN T ypup =810 =%'5; {2,0}

Bpy = 0RPOBTATE G, o = Bp0 =359 12— 2},

®10 = OMBOATB'® 5 p = Bg1 = ¥y, {0,2)

@y, = OABOATED g =&, =¥y, 10,0},

@, = 0ABTATB® 0 p =8, =&, 10,—2},

By0 = LAIONGE B 5,05, = Bgp = &)y = 2,+ 2},

®p1 = LALBON T 5,050 = $15 = 841 {—2,0}

Bpp = LALBLATE ® 5,050 = Bpp = 0 {-2,— 2}
(2.28)

In each case, the type is given on the right. Furthermore,
the scalar curvature is defined by

A=A=A'=lqR {o, 0}. (2.29)
The list (2. 21)-(2. 26), together with the corresponding
list of primed equations does not completely exhaust the
NP equations (4. 2) of Ref.4. The remaining equations
(4.24d), (4. 2e), (4. 21), (4. 21), (4. 20), and (4. 2r) in Ref.4
refer to derivatives of spin coefficients which are not
spin- and boost-weighted quantities. They cannot, there-
fore, be written explicitly in our present formalism as
equations like (2. 21), Instead, they play their role as
part of the commutator equations for the differential
operators b, 7', 5 and ¥’. These commutators, when
applied to a spin- and boost-weighted scalar n of type
{#,4q}, are
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(B — DBl =[(T—7)8 + {1 —7')¥
—plkr’ — 77" + ¥y + &, —A)
— gk’ — 77" + ¥, + &, — A)]n, (2.30)

(05 — BD)n = [pB + 08’ — 7' b— KD’ — plp'k — 7’0 + ¥y)

—q@'xk — pT’ + p4) I, (2.31)
(8%’ — v'd)n = [(p’ — p') B+ (p — )P

+plop’ — 00’ + ¥y — &;; —A)

— q(pp’ — T’ + ¥y — &,, — A)m; (2.32)

together with the remaining commutator equations ob-
tained by applying prime, complex conjugation, and both
to (2. 31)., Note that the spin- and boost-weights of 7
enter explicitly on the right-hand side. We must be
careful, when applying primes and bars to these equa-
tions, to remember that 1’, 7, and 7’ have types which
are not quite those of 7. Thus, under the prime, p be-
comes — p and g becomes — g; under the bar, p becomes
q and g becomes p; under both bar and prime p becomes
— q and ¢ becomes — p.

The commutator equations are the one place where our
present formalism yields more complicated formulas
than the original NP formalism. This seems to be the
price we pay for the very considerable formal simplifi-
cation that we obtain for the other equations. But we
must bear in mind that our commutators are actually
combining information which comes from two different
places in the NP formalism. There is, however, a gain
as regards geometric content of the commutators with
our present formulation. The extra terms which arise
when p or g is nonzero may sometimes be interpreted
as curvature quantities referring to submanifolds in
the space-time. We shall see this explicitly for Eq.
(2. 32) in the next section.

The full Bianchi identities consist of 1

BV, — 8%y — By + By,
=— 1'%, + 4p¥; — k¥,

+ Ty — 2089, — 209, + 2Dy, + KBg,, (2.33)
D, — 8'¥y — 8'&y; + D'@y + 2PA
=0'¥, — 27'¥; + 3p¥, — 2k¥y
+p'®gg — 2T®g; — 27810 + 2By T 0Bpg, (2.34)

P¥; — 'Y, —Dd,y; + BB, — 25°A
=20'¥, — 37'%, + 2p¥; — k¥,
—2'®, + 217y, + Ty — 2By, + KOy,
(2.35)
¥, — 8%y — 5Py, + D'y,
=+ 30'¥, —47'¥,; + p¥,
— 2B+ 2008, + Py — 2TH, + Ty,
(2.36)

together with their primed versions, the contracted Bian-
chi identities

Dé,, + PPy, — b0, — 8Py + 3PA
= (p' + 5')@00 + 2(p + ﬁ)éll —_ (‘T’ + 2?)@01

— (27 + T)&,9— KBy, — Kby + 0By T TR0
(2.37)
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Bdy, + Dby, — 5Byy — B, + 35A
=(p’' + 25')‘1’01 +(2p + 5)‘1’12 — (7" + ?)‘I’oz
— 2T+ 78y —K'Bpp — KBy +08y; +T'®y,
(2.38)

and the primed versions of these equations. [More
generally, equations similar to (2.3% and (2. 38) express
the equations of an arbitrary conserved symmetric two
index tensor.]

The content of Einstein's vacuum equations is obtained
by putting all the &'s and A's equal to zero in (2, 21)-
(2.26) and in (2.30)-(2. 32). The Bianchi identities
(2.33)-(2.36) (with = A = 0) become considerably
simpler in this case and closely resemble Maxwell's
source-free equations. In the present formalism, Max-
well's source—free equations are

B, — Vg =—1T'¢¢ + 2001 — Ky, (2.39)

by, —B'py =0'¢py — 27'¢, + Py, (2.40)

together with their primed versions. Here we have

o = OAOB¢AB =—¢y’ {2, 0}’
¢, = 0ALB¢AB= - ¢1' {0! 0}: (2.41)
¢2 = LALB¢AB=_¢OI {_ 2’0}:

where the symmetric spinor ¢ ,; is related to Maxwell's
field tensor by

Fop = ap€arpr + €450 4150
Finally, we remark on the existence of an additional sym-
metry possessed by the spin-coefficient formalism which

was noticed some time ago by Sachs.12 We denote the
Sachs symmetry by an asterisk (*), defining

(04)* =04, (LA* =14, (BN* =14, ([4)*=— 354
(2.42)

so that

(19)* =mea, (me)* =— e,

@e)* =na, (n9)* =—ma, (2.43)

This preserves the required normalizationsand ortho-
gonality relations). Clearly the Sachs symmetry opera-
tion does not commute with complex conjugation, since
the relation between an object and its complex conjugate
is destroyed. However, we do have

(n*)* =(_ 1)"77, (n,)* = (_ l)q(n*)’,
and 7 = (— i)p+a(7)*, (2.44)

where 7 is the quantity of type {p, g}. Note for such an 7,
the quantity n* is of type {p,— gq}.

From (2. 3) we get

k*=0, o¢*=—k, p*=1, T¢*=—p, K*=-—0,
c*=k', p*=—1,7% =p,

kK¥=—5', o*=—k'y, p*=1, T¥=p’, K'*=0,
G =%, p*=—7, T*=-p, (2. 45)

P*=p B*=—Db, DIr=_75, F*=D, (2.46)

Yo* =Wy, U F=¥,, Y*=1,,
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\1’3 == ‘I’s, \P4* = ‘1’4,
Eo* = T174: _‘171* = —Es’ -‘172* = —‘iz,
T =—F, T, (2.47)
Boo* = Bg2s  Bor* =— Yo Be® = @g0s P10* = P12s

*
@,

* _
$y17 =— @34,

@12% = @1

* _
$y2" = @30,

®y0" = P25
A*=A. (2.48)

=— &4,

Under the Sachs symmetry operation, the equations in
our list (2.21)-(2. 26) are permuted among themselves
and so are those of the lists (2.33)-(2. 36) or (2. 37),

(2. 38); so also the commutators [cf. (2. 30)-(2. 32)]. The
Sachs symmetry, together with the prime operation, can
be used to simplify the generation of equations; alter-
natively it provides a useful check of equations obtained
by other means.

3. APPLICATION TO 2-SURFACES

In order to establish the connection between our present
formalism and existing work which employs an b opera-
tor, we must show that our 8 operator does in fact re-
duce to the one defined previously,?10 under the appro-
priate circumstances. Let S be a spacelike or timelike
2-surface in the space-~time M. Then at each point of

S there are two preferred null directions, defined by the
property that they are orthogonal to S if S is spacelike
and tangent to S if S is timelike. We shall discuss only
the spacelike case below. The situation for a timelike S
is analogous. (Essentially, to pass to the timelike case
from the spacelike case we must let /¢ and n¢ take over
the roles of m ¢ and 7 ¢; hence,P and B’ will take over the
roles of 9 and %' below.)

Let us suppose, then, that S is spacelike and that a null
tetrad and dyad system has been set up in M (in the
neighborhood of S at least), so that /¢ and n¢ are perpen-
dicular to S at each point of S. (For this to be possible
globally over S would require some topological restric-
tions on S and M—but we shall ignore such matters here.)
The freedom in choosing such a tetrad system, lies part-
ly in the fact that it is only the two null directions which
are uniquely singled out at each point of S, not a complete
null tetrad, and partly in the fact that the choice of null
tetrad in the remainder of M is (apart from smoothness
considerations) quite arbitrary. This latter freedom is
of no concern for us here since we shall be interested
only in quantities defined at points of S and in differen-
tiations which act within S itself (i.e., in directions tan-
gent to S). The remiaining freedom, is, of course, pre-
cisely that which the formalism of this paper is designed
to handle.

Consider any tensor field defined on M. At each point of
S we shall have a uniquely defined tensor with’n S, which
is obtained by projecting the original tensor orthogonally
into the surface. Conversely, any tensor defined within
the 2-surface S can be obtained by such a projection. In
particular, some tensor fields defined on M will have the
property that they are completely tangent to S at each
point of S, Such fields we regard as being unaffected,

at points of S, by the above orthogonal projection., We
may interpret any tensor field defined within S as such
a tensor field in M modulo its behavior off S.

To be more explicit about the nature of this orthogonal
projection, define

Eb=—m mb —m,m® and Fi=1In®+n,lt, (3.1)

Then we have
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EYE§ =E, FF§=F:, FOE=0=ELF,

and E® + Fb =085 (3.2)

Furthermore, if

Ee = + {9, (3.3)
where n¢ is the part of £¢ linearly dependent on ¢ and
me and where £ is the part of £¢ linearly dependent on
{2 and n4, then we have

ca = ngg’
(3.4)
Thus, E? is the orthogonal projector which can be used
to project a vector or tensor at a point of S info S, while
F? can be used to pick out the parts of a tensor which
are perpendiculay to S, For example, if the tensor T ,,°
on M is defined at a point of S; then the tensor U ,° =
T,,ELE4ES, at this point, is the orthogonal projection
of T,,¢into S. f U, ¢ =T ,,° thén T ,,° is completely
tangent to S at this point. In this case, the projections
of T ,,¢ which involve components perpendicular to S,
suchas V,,° = qufF,fquEf, N A TM’FngﬂFg,
must all vanish. Thus we may interpret T ,,¢(= U,,°) at
the point as a 2-tensor defined within the 2-surface S,
For a general T,,¢ which is not completely tangent to
S, there will be some nonvanishing projections among
V,:%s+++1Z,,°. The information contained in T,,° will be
shared among all of U, %, V,,°, ..., Z ,,%but only U, °
is interpretable as a 2-tensor defined within S,

ne = ngg, §¢ = ngba’ Ny, = ‘stg,

If we restrict attention for the moment only to tensors,
such as U,,°, which are completely tangent to S, then
since we may regard them as 2-tensors within$ (at points
of S) we may ask that the definition of covariant deviva-
tive within S be defined in terms of the four-dimensional
covariant derivative operator Vv,. To do this, we merely
apply the four-dimensional operator V, to any tensor
which is completely tangent to S and then project the re+
sulting tensor back into S. The resulting tensor, when
interpreted as a 2-tensor defined within S is precisely
the (two-dimensional) covariant derivative of the ori-
ginal tensor interpreted as a 2-tensor.13

For example, in the case of U,,° above, the two-dimen-
sional covariant derivative of U,,° may be interpreted
as

ESEJEZ(ESV)U, ¥ (3.5)
We can also define a “covariant derivative” operation
(analogous to Fermi or Fermi—Walker transport,14 but
where the 2-surface S replaces the curve) for quantities
defined at points of S which need not be completely tan-
gent to S. For example, in the caseof V_,°,...,Z ¢
defined above, the respective “covariant derivatives”
would be

FREGEC(ESV,)V, "

sy BFAFUESVIZ, 7.

(3.6)
Let us now return to consideration of the set of spin-

and boost—weighted quantities associated with a tensor.
Take the tensor T, ¢, for example. We can construct a
total of 64 spin- and boost-weighted scalars from T,,°,
namely those quantities obtained from T, ¢ by trans-
vection with the various vectors of the null tetrad, If

we transvect only with the vectors m¢ and m ¢ then we
obtain eight quantities referring to the part of T, ,°
which is completely tangent to S. For example, mm?

m T,,¢ =mmdm U,,°. These quantities may be thought
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of as arising from a 2-tensor defined within S. Since m¢
and ¢ are of respective types {1,— 1} and {— 1,1}, it
follows that the type of any such quantity will be of the
form {s,— s}. Thus, the boost weight of such a quantity
vanishes and the spin-weight s alone serves to charac-
terize the type.

We have remarked above that the two-dimensional co-
variant derivative of U,, © may be obtained by projecting
the four-dimensional derivative of U,,¢ back into the
surface S. We may achieve this projection instead by
contracting with m ¢ and m 2, For example,

membm (meVy)U ¢ =mbmamrm ESEVES(ESV )U,,°.

(3.7
Expression (3. 7) can be rewritten in terms of the &
operator as follows:

mememom V,U,,° = Bmamdm U,,°). (3.8)
Perhaps the easiest way to see this is to write the left-
hand side as m ®m%m BU  ,°—where we allow 5 to act

on tensorial quantities (here U,,° has type {0, 0})—and
observe that E2&m e = 0 (m ¢ having type {1,— 1}) and
Eb%m @ = 0 (m< having type {~ 1,1}). In fact, we have
quite generally (allowing 3 and P to act on spinor quan-
tities)15

Pod=— k14, DBoA=—014, BoA=—pL4
PloA=— 714 (3.9)
DA =— 704, B4 =—p'o4
d'14=—0'04, DA =—('04,
Thus we obtain particularly,
Bm?=—0'l*—ogns, Ome=—p'le— pne, (3.10)

Expression (3. 8) shows that 5 is, in effect, just a two~
dimensional covariant differentiation operator acting
within the surface S. In fact (3.8) is a simple extension,
apart from the absence of their factor v2 on the right-
hand side, of an expression given by Goldberg et al.10
[cf. their Eq.(2.13)] for the operator d as had been ori-
ginally defined by Newman and Penrose.? We observe
that any spin-weighted quantity defined on S (of integral
spin weight) can be expressed in the form m@. - -memd
«o»m/T, .q._ s s0(3.8) fully characterizes 5 on S. To
get complete agreement with the Newman—Penrose (6, ¢)
expressions for 3, we should require S to be intrinsical-
ly a metric sphere of radius 2-1/2;
—ds? = 3(d6? + sin26d¢2) (3.11)
on S. But for complete agreement in the case of a gener-
al 2-surface metric we would have (strict‘}x speaking)
to multiply up our 5 operator by a factor v2, (It is per-
haps unfortunate to have to introduce a discrepancy of
this kind into our definition of 8. However,the formulas
of this paper would look unnecessarily cumbersome were
we to retain complete numerical agreement with the
original Newman—Penrose definition.)

Note that, as applied to spin-weighted scalars defined on
the surface S, the operator ¥ is really completely in-
trinsic to S;that is to say, its effect depends only on the
intrinsic metric of S and not on the way that S is em-
bedded in the space~time M. When applied to boost-
weighted scalars, the effect of & does depend on the em-
bedding. We can illustrate both these facts if we examine
the geometrical meaning of the commutator (2. 32). In
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our present situation the quantities p and p’ are both
necessarily real at points of S. This is because /¢ and
n¢ are the null tangents (i.e., normal) to the two null
hypersurfaces which intersect in S, so the curl of both
1% and n¢ must vanish. (This is just the condition that
the plane-elements spanned by the real and imaginary
parts of m ¢ are surface-forming.) Thus, the commuta-
tor (2.32) becomes

(5" — 5'B)n = — (K — gk, (3.12)
where
K=o00'—pp' — ¥, + A+ &,,. (3.13)

The complex scalar K (type {0, 0}) is a kind of complex
curvature for the surface S and has been studied earlier
in connection with the characteristic initial value pro-
blem.16 The Gaussian curvature of the surface S is
twicel7 the real part of K:

(2R = (K +K).

This can be seen by choosing p =1, ¢ =— 1 in (3.12);
then 7 is defined by a real tangent vector y ¢ given by
ye=—nme—ymea, son=my, (3.14)
Equation (3. 12) expresses the rotation of y¢ as the vec-
tor y ¢ is parallel-transported within S around a small
loop on S. In a similar way, if we choosep = ¢ =1 in
(3.12), then 7 is defined by a vector z2 normal to S given
by
2¢ = £le + me, son=Il%, (3.15)
As the vector z¢ is transported around a small loop on
S [this is the generalized Fermi transport of (3. 6)—the
vector must be continually projected out perpendicular
to § as it is carried around], then it undergoes a boost
of magnitude given by the product of {( X — K) with the
small area enclosed by the loop. Thus the imaginary
part of K describes an extrinsic curvature invariant of
Sin M.

To sum up, we see that our formalism provides an effec~
ive means of studying the intrinsic geometry of Rie-
mannian 2-surfaces. This is when we restrict attention
merely to spin-weighted quantities (type {s,— s}) and
employ a tetrad of vectors related to a surface S as
described above., This is essentially the same % for-
malism as has been employed previously. However, if
we allow spin- and boost-weighted quantities (general
type {p, ¢}) then we can also use our formalism for the
study of the extrinsic geometry of 2-surface embedded
in a space~time. (This is still employing only the 5 and
&’ operators at points of a 2-surface S.) But our for-
malism is, of course, much more general than this since
we can use the P and b’ operators to study the relation
between different embedded 2-surfaces, and also in cir-
cumstances in which the plane-elements spanned by the
real and imaginary parts of m ¢ need not be surface-
forming.

4. CONCLUSIONS

We have presented, here, a formalism which should have
many applications to the type of situation in which the

NP formalism has proved useful in the past. It is likely
that the present approach will provide considerable for-
mal simplifications in most cases. In particular, it should
yield asymptotic formulas directly in terms of the fami-
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liar & operator, obviating any necessity of having to pass
through a complicated intermediate stage of explicit de-

pendence on angular coordinates. We have contented our-

selves here with presenting only the basic formalism,
Detailed applications will be given elsewhere,
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A spinor structure which is covariant under a representation of the groups of isometries in general
relativity is defined. The relationship of isospinors with space-time objects is investigated and their
use in describing elementary particles in general relativity is discussed.

I. INTRODUCTION

In 1967 Penrose introduced a spinor formalism in
special relativity based on a representation of the group
of conformal motions in Minkowski space.l One of the
motivations for the introduction of that spinor forma-
lism is the fact that the two-component spinor field
equations in special relativity show different behavior
when submitted to homogeneous Lorentz transforma-
tions and to translations. In the new spinor formalism
(twistors) the covariance under rotations and transla-
tions appear in a single expression.

The twistor formalism suggested that a similar spinor
structure (isospinors) can be constructed both in special
and in general relativity but which transforms accord-
ing to a representation of the group of isometries of the
space—time. In the case of general relativity the co-
variance of the isospinors has the same expression for
rotations and translations but in special relativity two
distinet expressions appear.

As it may have already become clear, isospinors will
have physical significance only when the space—time in
question admit a group of isometries. For this reason
we will restrict ourselves to the set of space-times
with at least one Killing vector field.

The isospinors form a natural vehicle to describe
structures in general relativity which are covariant
under isometries,

Therefore, one of the possible applications of isospinors
is the description of elementary particles in general
relativity. In a subsequent paper we shall present a
similar formalism which shows covariance under a
spinor representation of the groups of conformal mo-
tions in general relativity,

Il. EMBEDDING BUNDLES

The two-component spinor fields in general relativity
are defined on the tangent bundle to a space—time R4.
The relation between the tangent spaces and the space—
time R4 can be realized by the use of a tetrad field
which transforms partially by the group of propagation
of the tetrad field (the tetrad group) and partially by
the Lorentz group. Therefore, the two-component for-
malism defined on the tangent bundle is suitable to des-
cribe the Lorentz covariance. If we assume that R4 has
a group of isometries, then part of this group is ab-
sorbed by the tetrad group, and consequently the iso-
metric covariance is not fully represented by the (flat)
spinor group. To obtain a flat spinor structure which
is covariant under the group of isometries of R4, we
replace the tangent bundle by the local isometric em-
bedding bundle of R4.

Suppose R4 has a minimal embedding space M(p,7, s)
with dimension p = 4 + ¢ and signature  + s. The iso-
metric embedding of R4 is the manifold g8 = (M(p,7, s),
R4, 1), where M(p,7, s) is the fibre and 7 is the projec-
tion map.
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Let X* be the Cartesian coordinates of a point in
M(p,7, s), and let x¢ be the Gaussian coordinates based
on R4 (all Greek indices run from 1 to p). The coordi-
nates of a point in R4 are xL and the coordinates
measured on the directions orthogonal to R4 are x4
(lower case Latin indices run from 1 to 4 while capital
Latin indices run from 5 to p. The tilde under the
Gaussian indices are used to distinguish them from
Cartesian indices when numerical values are given).
The embedding gives the coordinates transformations
X¥ = X*(x2) and its derivative map gives the transfor-
mation of tensors referred to the two systems. We use
the notation

. x g . axH axH
x = ’ = b = b
B axw ¢ axe ¥ oxe
oxe
xg" = X (1. 1)

Thus if U* are the Cartesian components of a vector in
M(p,7, s), its Gaussian components are £¥ = x,¢U*.

On the other hand, if 7#* are the Cartesian components
of the metric tensor of M(p,7, s) and g2 are its
Gaussian components, they are related by

goB = x ox By,

u (11 2)

Conversely, we have the relations

N = Xg“Xg"ggé’ nuu:xugxuéggg,

such that g28g, = 62;.

Now we can show that if R4 has a group of isometries,
then this group is locally induced by the homogeneous
fibre group of the bundle 8. This fibre group is the
group of isometries of M(p,r, s) which is the group of
pseudo rotations and reflections O, s) in that space.
Let

X'H=Xt+Ut, U*=elXy (11. 3)
be one infinitesimal transformation of O(r, s), where the
p(p —1)/2 infinitesimals ¢¥ are constants and satisfy
€ (1) = 0, The isometric character of this transforma-
tion is expressed by the vanishing of the Lie deriva-
tive of n*¥ respect to UH:

Lyntr = U = 0. (0. 4)
(Round brackets on indices mean complete symmetriza-
tion.) On the other hang[, the Gaussian components of the
generators are £ &= xg U", so that we obtain the infinite-
simal transformation of the Gaussian coordinates,

e =xe2+te

(1. 5)

Copyright © 1973 by the American Institute of Physics 882



883 M. D. Maia: Isospinors

Since (II. 4) is a tensor expression, we have also

aB = £(a38), (L. 6)
where the semicolon denotes covariant derivatives.
Expression (II. 5) can be divided in two parts:

x'i=xi4+ EL,  x'A =x4 + £4, (IL. 7)

and (II. 6) gives

£ = 0, £@4:8) =0,

Now, in the Gaussian system the space-time R4 is
simply defined by x4 = 0. If f(x<) is any real function
defined in M(p, 7, s), its space-time 'projection’ is

lim f(x2) = f(x*)|z4 as x4 - 0. Sometimes a function
is only defined on the surface R4; we denote this fact
by f(R4). In particular, we have?2

ij _ i3 )
g |R4 _xl.lxl-l T’ple4 =& '(R4)’
g‘.iélﬂ4 :0’

48 A B AB
g'|R4=xpx;777 |R4=:t5-.

The transformations induced in R4 by (II.7) are

X'i=xi+ Eilg, =0, x'A—gAIM_O (I1. 8)
and are subjected to the conditions
E@P] g, =0, (LA, =0 £, =0 (L9

The covariant derivative of a covariant vector in the
Gaussian system is given by

£a:8 = gas+gaar ey,

where the Gaussian components of the connection are

I"QZQ‘ = goé 1"g s = 38%8(g

Zhsy T 8y5.8 " 8sy.0)

As it follows, the expression £%ij|,, does not coincide
with the expression of covariant derivative in R4 unless
the condition

55134 =0, {IL 10)

is imposed. Under this condition, (II. 8) becomes

xi=axi+ Edlg,, x'4=0.

Consequently, the condition (II. 10) is such that the trans-
formation does not alter the definition of R4. Thus
points in space—time are mapped into points of space-
time. Therefore, (II. 10) defines a subgroup of O, s)
which depends on the space~-time embedded. Together
with (II. 10) the first equation (II. 9) gives part of
Killing's equations of R4, corresponding to 'rotations’

in space—-time. The second equation corresponds to
rotations in the planes [{, A] projected in R4. These
projections give the translations in the neighborhood of
the embedding point of R4. (As can be deduced from the
process of group contraction of Inénti and Wigner.3
Finally the last equation is identically zero. Thus,
adding the reflections, we obtain from 0@, s) and the con-
dition (IL. 10) the local group of isometries of R4. Con-
versely, given the transformation
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then, obviously, {4 |z, = 0, and we get a subgroup of

o, s).
IIl. CLIFFORD ALGEBRAS

The formal process to introduce a spinor structure in a
Euclidean space is through a representation of the
Clifford algebra defined on the same space. A Clifford
algebra of dimension 2#, defined on the Euclidean space
E, , can be defined as the quotient

c, =T(E,/I,

where T(E,) is the tensor algebra of E, and I is the
ideal generated by the elements of the form

x®x —flx) -1 xc€E,,
where ® denotes the tensor product and f(x) a quadratic

form in E, (Chevalley4). The algebra has n generators
¢, such that

epey =0y

In our case we have a pseudo-Euclidean space M(p,7, s)
with metric n,, so that the generators of C, satisfy
€uly = My (1. 1)
One important property is that the group of automor-
phisms of the Clifford algebra C, defined on M(p,7, s)
is isomorphic to Ofr, s) (Brauer and Weyl5; see also
Boerner®), The subset of the algebra generated by the
elements

1
My, = zep,ey

(UL 2)

(square brackets on indices mean complete antisymme-
trization) satisfy the commutation relation
[ ] = (nppMDo + .M, 77uc;lu - nvauo)'

Therefore, this subset is isomorphic to the Lie algebra
of Ofr, s). Let

(. 3)

be an inner automorphism of C,. Then it can be shown
that the operators S'are generated by

- -1
e, = SeuS

6S=1+ sew i, (1. 4)
Therefore, the subset of the algebra generated by M
generates the group of inner automorphisms of the
Clifford algebra. Combining this result with the result
of the proceeding section it follows that under the condi-
tion (II. 10) the group of automorphisms of the Clifford
algebra C, defined on M(p,r, s) induces locally the
group of 1sometr1es of the space-time R4 embedded
locally in M(p,7, s).

V. ISOSPINORS

The Clifford algebra C, (quaternion algebra) has a
matrix representation given by the Pauli matrices:

10 01 14 1 0
0= 1= 2 3 -
o= (o3) o= (o) = (ie) = (6-3)
Iv.1)
This representatlon can be used to obtain the matrix

representation of any Clifford algebra.5 We use the
following matrices:
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P ,=0,8"®0,80,805® *** ® 0y,

Qa=02®"'®02®03®00®"' ®00,

P0=0'2®"'®0'2, a=1---vp (IV.Z)
where we have v factors, p = 2v or p = 2v + 1 and the
matrices ¢,, 03 occupy the ath place. The Kronecker
product above indicated is once for all defined as from
right to left. Thus, for example, if A, B are 2 X 2

matrices, we have

_fab _{aBbB
A®B‘<cd)®3‘<c3d3>‘

The Weyl representation of the Clifford algebra is ob-
tained by choosing a particular matrix P _, @ ,or P, to
represent ¢,. Thus by renaming the matrices, we obtain
many equivalent representations.

The spinor structure is derived from the above repre-
sentation as one ideal of the algebra generated by a cer-
tain algebraic element.4 Equivalently we can regard the
matrices (IV. 2) as operators acting on a 2¥-dimensional
complex vector space, called the spinor space of the
algebra. The matrices (IV. 2) themselves belong to the
tensor algebra of the spinor space. The spinors trans-
form according to the corresponding matrix represen-
tation of the group of automorphisms of the Clifford
algebra. Let DM , be the matrix representation of
(III. 2), Then we get from (III.4) the matrices

8D =1+ z€#DM,, Iv.3)
which are the generators of the spinor group. The
covariant spinors transform as

V' = Dy v.4)
and the contravariant spinors transform as
x =xD1 (IV.5)

We use capital Latin letters to label spinor, and unless
otherwise stated they run from 1 to 2¥. Thus, in terms
of components, (IV.4) and (IV.5) read

VA =DAYE, X' 4=D8,xp.
In general ¥, x, and D are complex matrices so that we
may have also complex conjugate transformations. We
use the dot notation to indicate the transformation of
the spinors by D. Thus

V'A=DAYE,  x'i=DExs
Let 4 be the spinor group generated by (IV.3). As it is
a representation of the group of automorphisms of the
Clifford algebra, then it follows that its subgroup de-
fined by the condition (II. 10), s(R4) is a representation
of the group of isometries of the space-time R4 em-
bedded in M(p,7, s). The 2¥-component spinors defined
in M(p,7, s) and which transform according to 4(R4)
are called the isospinors of R4 and 4(R4) is called the
isospinor group of R4. On the other hand, since
M(p,r, s) is the embedding space for a class of space—
times, 4 is called the class isospinor group. Any isos-
pinor group of a space-time embedded in M (p, 7, s) can
be obtained from s by imposing the corresponding con-
dition (IL. 10). Thus, for example, in M(6, 4, 2) we have
the Schwarzschild spinor group 4(Schwarzschild) which,
as we shall see is the same as SU(2, 2) (Schwarzschild).
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The number of isospinor components can be as high as 32.
However, in certain cases, whenp = 2v and v is an odd
number, we can split the spinors into two equivalent
halves (Cartan?: semispinors). In the case p = 8 we can
also deal only with half the number of spinor compo-
nents by using the triality principle of the Clifford
algebras (Chevalley?; see also GambaBs).

V. CLASS ISOSPINOR GROUPS

As the Clifford algebras are defined on a pseudo-
Euclidean space, it follows that the matrices which re-
present a Clifford number are not necessarily Hermi-
tian. Instead of the Hermitian condition they satisfy the
relation

Xt =opXpl, v.1)
where X* is the Hermitian conjugate of X, u is a con-
stant matrix, and o is +1 when s is even and — 1 when
s is odd. The matrices which represent the generators
e, are either Hermitian or anti-Hermitian. Let ¢
(¢=1--+ m) be the anti-Hermitian matrices. From
—e, =ope, pl we get

(V.2

where we choose a(s) = 7 or a(s) = 1 such that y will
be always Hermitian. Since (V. 1) must be true for any
basis of the algebra, we must have also

o= a(s)eylepz T Cums

Xt=ouX'p, (v.3)
with X' = D X D-1, By comparing with (V.1), it follows
that

p =+ D'uD, (V.4)
where the plus sign holds for proper transformations
[rotations in M (p, 7, s)] and the minus holds for im-
proper transformations in M(p,v, s}). Therefore, the
constant matrix u is a characteristic of the class
isospinor group. From (IV. 2) we have that the matrices
e, are of either type:

8, 0 0] s,
e, = or e, = 5 0 )
0 |ny B
Thus according to the parity of p and s we have four
cases to consider.

(V.5)

(a) p even,s even: In this case we can always choose
the Weyl representation so that the anti-Hermitian
matrices have the shape

0
e’“. - < g“i> .
h,;| O

(In other words the matrices e ,; are different from Q4.)
With this choice of representation we have from (V. 2)
that u has the shape

=),

where

(V.6)

M=gp1hp2 e gps

are Hermitian matrices.
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Suppose we are given a rotation matrix:

a0
D= (0 b). V.7
Then we get from (V. 4)
M = a*Ma. (V.8)

We have two subcases: If v is even and reflections are
considered, then the isospinor group is the group of

2¥ X 2¥ complex matrices satisfying (V. 4) with p given
by (V.6). If v is odd, then we have semi-isospinors
which transform by the group of 2v-1 X 2v-1 matrices
which satisfy (V.8). The matrix which characterizes
the semi-isospinor group is M. We shall denote by
SU(A, A, A, ...;A) the spinor group characterized by
the matrix p of the form

IA
_...IA

u = . ’ .
1,
where I, is the A X A unit matrix.

One example is the isospinor group of the Schwarzschild
solution. The Schwarzschild solution belongs to the
class M (6, 4, 2) and the class isospinor group is SU(2, 2).
By imposing the condition (II. 10) we obtain the
Schwarzschild isospinor group SU(2, 2) (Schwarzschild),
which is a subgroup of SU(2, 2).

(b) p even,s odd: Again choosing the matrices not

so that e pi is different from @,, we get from (V. 2)

{0 M)

E=\GMm0 /-
Considering the rotation matrices similar to (V. 7), one
gets

M= aM". (V.10)
There are two subcases: If v is even, the group of iso-
metries of M(p,7, s) is O, s) and the isospinor group
is generally denoted by SL(2¥, C). This spinor group
may be characterized by the presence of the little
groups which correspond to the cases in which ¢ = b in
(V.7). A typical example is given by the Minkowski
space M(4, 3,1). The isospinors are the Dirac spinors
with the isospinor group SL(4, C) which contain the
little groups SU(2) and SU(1, 1). If vis odd, we have semi-
isospinors with 2v-1 components. In this case the group
of semi-isospinors are not characterized directly by
the matrices M and N. We denote the isospinors by
SL(2¥-1, C) and this group is characterized by the collec-
tion of little groups which satisfy (V.10). Examples of
classes where this may occur are M(6,5,1) and
M6, 3, 3).

(c) p odd,s even: In this case we have
_ (M| O
H=\olzr) -
And the spinor groups is, as in the case (a), denoted by

SU(A, A, ..., A). Since p is odd, semispinors cannot
occur.
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A typical example is the class of the de Sitter space-
time M (5, 3, 2) whose isospinor group is SU(1, 1, 1, 1),
We notice that in the cases of spaces with constant
curvature the condition (II. 10) is trivially satisfied.
Therefore, the isospinors of de Sitter space are the four
component spinors which transform according to
su(1,1,1,1).

(d) p odd,s odd: The form of y is

- ()

so that the isospinor group is denoted by SL(2% C) and it
is specified by its collection of little groups as in the
case (b). As p is odd, we cannot have semispinors. A
typical example is the class M (5, 4, 1) which is the

class of the anti de Sitter space-time.

In the Appendix we list all the 22 possible isospinor
class groups which may occur in general relativity.

Vi. THE GEOMETRY OF ISOSPINORS

In order to establish the relation between isospinors and
tensors in space—time we construct the p spinor tensors

e, BA which are the rank-2 mixed spinors associated

with each generator e, of the Clifford algebra. If X+ is
a vector in M(p,7, s), then it corresponds to the alge-
braic element X = Xte, and also to the rank-2 spinor
with components

XAp =Xre A, (VL. 1)
Conversely, from (III. 1) we have
e(pAlilleu)Bcz 77,11, 6Ac' (VI.Z)

Applying this expression in (VI. 1), we get the compo-
nents of the vector which is associated with a rank-2
mixed spinor

— puA., B
Xt = enfgx 2.

If R4 is a space—time belonging to the class M{p,7, s),
we may construct the Gaussian system of coordinates
and define the condition (II. 10) under which the above
spinors become isospinors. In this Gaussian system we
define the isospinor tensors e 4z = X* ae“"‘ﬁ, so that

if x4 2 is a given isospinor, we get the Gaussian com-
ponents of the associated vector,

gg = egAﬁ XAB’
and the space-time components of this vector are
£; lra = eiABXAB-

Conversely given a vector in R4 with Gaussian compo-~
nents & 4 (¢ A= 0) the corresponding isospinor is

A. — tip A,
XB_ELQLB‘

A metric isospinor can be introduced naturally from
the theory of spinors. This metric isospinor is intrin-
sically associated with the equivalence between the
spinor representation of the group of isometries of
M(p,r, s) and its adjoint representation. If the matrices
of the spinor representation are generated by (IV. 3),

the matrices of the adjoint representation are generated
by
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6D == (1 — 3 e#” DM,,) = det D(6D) 1.

To see the equivalence between these representations
we notice that the transposed matrices ¢ E are also the
generators of the same Clifford algebra

T T
e(peu) =771JV'

Now, consider the matrix € such that el =¢€e el
From the Weyl representation we have that either
T _ T~
e, =¢,orel =—e,.
Therefore,
€=eplep2 v epr' (VI.3)
where now e, ; are such that el; = — e, ;. When v is

i
even, we have €T = € if v/2 is even and €T = — € if v/2
is odd, and the form of the matrix ¢ is

- (219).
0 ell
On the other hand, when v is odd, we have €7 = — ¢ if

(v—1)/2is even and €7 = € if (v —1)/2 is odd, and the
form of € is

0] ¢
o (219).

Consider now the transpose of ¢, = De, D-1. Using the
fact that det(D) = £ 1, we get, from D = eDe-1, that

€ = De D7, Therefore, € is a rank-2 contravariant iso-
spinor whose components we denote by €,,. It follows
that €-1 is a covariant isospinor with components ¢ 45,
These isospinors can be used to rise and lower isospinor

(VL. 4)

(VL. 5)
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indices. A covariant isospinor transforms as ¢’ = D¢.

It follows that €p = ¢ D¢ = Dep = D-lep. Defining

YT = ep, we get Y = ep’ = YD1 which shows that ¢ is
a contravariant isospinor. In terms of components we

set

by =0d%ep, and YB=eBAy,,
In the cases where semi-isospinors occur, the relation
to space~time tensors follows without difficulty.

VIil. ELEMENTARY PARTICLES IN GENERAL
RELATIVITY

As we mentioned in the Introduction, the isospinors
form a suitable vehicle to describe the properties of
space—time which have isometric covariance. In par-
ticular the isospinors may be used to describe elemen-~
tary particles in general relativity, At present there
are various suggestions for a definition of elementary
particles in general relativity from the group theoretic
point of view,? The main difficulty in this direction lies
in the choice of a group of isometries in general rela-
tivity. Among the possible candidates there is the BMS
group, 10 whose representations have been studied by
Cantonil! and McCarthy.12 Another candidate is the
fiber group of the tangent bundle, which is the Poincaré
group. This group is justified mainly by the weakness
of the gravitational force. However, the group theore-
tical approach to elementary particles is a purely kine-
matical problem, and the use of such argument would be
somewhat artificial.

Now we shall try to envisage the fiber group of the em-~
bedding bundles as group of isometries in general
relativity. We can regard the curved space-times of
general relativity as deformations of Minkowski space

TABLE 1.
P M(p,r.s) L(p,7,s) Spinor group Main little groups Important subgroups Notes
4 M@#,3,1) 50(3.1) SL(2, C) SuU(2), su(1, 1) f
4 M§E22 0(2,2) su(1, 1) x sy, 1) g
5 M(5,4,1) S04, 1) SL(4,0) Su(2), suL, 1) SU(2) x SU(2) g
5 MG5,3,2) S0, 2) su{, 1,1, 1) su(1,1) x su(1,1) g
6 M(6,5,1) 0(5, 1) SL'(4,C) 0(5), 504, 1) a,e, g
6 M(6,4,2) 04,2 SU(2, 2) SU(2) x SU(2) a,g
6 M(6,3,3) 0(3,3) SL"(4,C) su(1,1,1,1) Ssu(l, 1) x su(, 1) a
7T M(1,6,1) S0(6, 1) SL{8, C) SU@4), S04, 1) SU4) c,e
T M(1,5,2) S0(5, 2) SU@E, 2, 2, 2) sU@, 2), g
sUu,1,1,1)
T M(1,4,3) S04, 3) S'L(8,C) su@,1,1,1) SU(2) x SU(2) g
8 M(8,1,1) o1, 1) S"L(8, C) 0o(7), SU4, 4) SU4) a,c,eb
8 M(8,6,2) 0(6, 2 SU(1,1) X SU4, 4) SU(4) b,c
8 M(8,5,3) 05, 3) S"'L(8,C) SU(@2,2,2,2) SU(2) x SU(2) a,b
8 M(8,4,4) 04,4) SU(1, 1) X SU(2222) SU(2) x SU(2) b
g M(9,8,1) S0(8, 1) SL(16,C) SU(8), SU@4, 4) SU@4) c
9 M@9,T1,2 So(1, 2) SU@4,4,4,4) SU#4, 4 [
9 M(9,6,3) S0(6, 3) S'L(16,C) SU2,22,2 sU@) cg
9 M(9,5,4) S0(5,4) SU(22222222) SU(2) X SU(2) g
10 M(10,9,1) 09,1 S"L(16,C) 0(9), 0(8, 1) a
10 M(10,8,2) 0(8, 2) SU(8, 8) SU(8) a,c
10 M(10,7,3) o(1,3) S”'L(18, C) SU(4,4,4,4),80(2,2,2,22222) a,c
10  M(10,6,4) 0(6,4) SU@,4,4,4) SU4)
10 M(10,5,5) 0(5, 5) Siv(1s, C) SU2,2,2,2,2,2,2,2) SU(2) x SU(2) a,g

2 Semispinor groups.

b  Semispinor groups may occur with the use of the
triality principle: M (8, 6, 2) = SU(4, 4); M(8, 4, 4)
= SU(2, 2, 2,2).

c  0(6) ~ SU4) > SUB).
SU(8) O SU(4) 2 SU(3).

€ O(5) as subgroups of SU#), SO(4, 1) as subgroup of
SU(2, 2), O(7) as subgroup of SU(8).
nonphysical example,

€&  Spaces which contain known space-times embedded.
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For example, M (5, 4, 1), de Sitter; Einstein space~-
times, M (5, 3, 2), anti de Sitter space~-time, M (6, 5, 1),
Kruskal space—-time, M (6, 4, 2), Schwarzschild
space-time, M (7, 5, 2), Petrov space T,/G4/4,*
M(1,4, 3), Petrov space T,/G4/5,6,* M(9, 6, 3),
Robinson—-Trautman space~time, ¢ < 0,M(9, 5, 4},
Robinson-Trautman space-time, ¢ = 0, M(10, 6, 4),
Weyl axisymmetric space-time,* also Osvath anti-
Mach space-time, * M (10, 5, 5), G6del space~time.*

* As in the paper by Rosen.13 There is no proof
that these isometric embeddings are minimal.
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by the introduction of a gravitational field. As this
happens the Minkowski space-time is replaced locally
by the fiber of the embedding bundle 8 and at the same
time the Poincaré group is replaced by the fibre group
of B. General relativity does not deal with a single
space—time but with a collection of space—times which
are solutions of Einstein's equations. Therefore, it is
reasonable to think of the group of isometries of
general relativity as a group of isometries of a class
of space—times, each class being determined by the
curvature of the space-times. As we have just seen the
fiber group of each embedding bundle induce locally the
isometries of each space—time in the class defined by
the bundle. Therefore, we can regard the 22 possible
fiber groups of the 22 embedding bundles as natural
extensions of the Lorentz group. By the classification
of the unitary irreducible representations of these
groups, we obtain 22 structures for elementary particles
in general relativity. It remains to see which one of
these structures agree with the phenomenology of ele-
mentary particles, which in turn may provide a new
experimental basis for general relativity.
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APPENDIX

Table 1 contains the 22 isospinor class groups which
occur in general relativity.
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In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel
inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres
characterized by any optical depth dependent coherent scattering phase function. For the purpose of
illustration we consider the semi-infinite medium in which the absorption property of the atmosphere
is characterized by an exponential function. The methodology employed here is the extension of the
case treated previously by the author for homogeneous atmospheres.

1. INTRODUCTION

In an earlier paperl the multiple scattering theory of
radiative transfer2 was discussed for plane-parallel at-
mospheres which were assumed to be homogeneous.
Clearly the realistic treatment of model atmospheres,
such as those of planets, must take into account the in-
homogeneities. In particular, if the albedo for single
scattering is a function of optical depth, the reflection
spectra can not be correctly interpreted in terms of
homogeneous models. In this paper we present the mul-
tiple scattering theory for plane-parallel inhomogeneous
atmospheres under the assumption that the phase func-
tion is separable;i.e., the phase function can be written
as a product of two functions, one containing the argument
T (the optical depth) and the other the relative angle
2'°Q (the angle between the incident and the scattered
radiation). However, we keep the formulation sufficiently
general so that it is readily extended to situations where
the phase function is degenerate in 7 and Q’-Q;i.e., it
can be written as a finite sum of separable functions.

It is worthwhile to mention here that the multiple scat-
tering theory provides a convenient tool for computing
the absorption line shape of the emergent radiation (say
from planetary atmospheres) by separating the effects of
multiple scattering from that of true absorption. For
homogeneous atmospheres such a separation is effective
uniformly for the entire region, while for inhomogeneous
atmospheres it is effective locally.

As a consequence the former situation lends itself to a
power series representation in the albedo for single
scattering (frequently called the Neumann expansion2:3)
in which the coefficients (Neumann coefficients) involve
the radiation frequency only via the total optical thick-
ness of the atmosphere. In the latter situation we shall
see that, due to the local character of separation between
scattering and true absorption, the analogous Neumann
coefficients will depend on the functional form of the
local albedo for single scattering. This should not be

FIG.1. Angular coordinates
in the semi-infinite atmos-

3 phere.
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construed as a disadvantage, but merely a complication
which was to be expected in dealing with inhomogeneous
atmospheres.

In this paper we treat the semi-infinite atmosphere in
which the albedo for single scattering is exponentially
dependent on the optical depth.

2. GENERAL FORMULATION

Equation of radiative transfer

Let us consider the equation of radiative transfer and the
Neumann expansion of it

pALR) 4 e gy =L fag'p(re-are) (2.0
oT LY
and
3L, (T,Q) 1
u_nTr’_ L) = faq'P(r,9-9)1, (7,0,

(2.2)

where P(7,Q°Q) is the coherent scattering phase function
which is local in 7 and

K7,Q) = f L(7,Q) (2.3
n=0

with 1_,(7,Q)
rate, i.e.,

0. We assume that P(1,Q+Q’) is degene-~

N
P(1,2°Q") = Z% w(np2-Q"), (2.4
j=
where N, the index of degeneracy is arbitrary but finite.
Further, if we write

pR-Q) = 22 em@ols; L(u, ) (2.5)

m=— o0
where @ = (u,¢) and @’ = (p’, ¢’) (see Fig. 1) and
S; m(i, ') is the scattering indicatrix, then the Neumann
expansion equation (2. 2), using the orthogonality prop-
erty of the phase factors ¢, becomes

aIn. m (T9 "")
ot

aT + In,m(T’ IJ-)
N 1 )
=5 Do M dw'S; i b )ua w1, (2:6)
J:

where
Ly w(Ty ) = [3d¢ eimol (7, 0) (2.7

so that
Copyright © 1973 by the American Institute of Physics 888
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1 2 ;
In(Tyﬂ) = _ Z e‘lm(blu m(Ty u')' (20 8)
21 oo '

We note that in all the equations given above the fre-
quency of radiation appears as a parameter; this is due
to the assumption that the scattering is coherent. Hence
that dependence is not explicitly indicated.

Integral representation of /n m(r u) for semi~infinite
atmospheres

Now following the procedure of Ref. 1, we consider the
time reversed adjoint equation for a purely absorbing
medium, i.e.,

I"'O) + G(1,— U5 7o~ I-‘»o)
= 6(u — pgld(T — Ty).

0
— K _G(T,_ [J.;TO,—
o7

(2.9)

We note that this Green's function satisfies the recipro-
city relation

G(T,— W3 Tgy— bg) = G(Tgs Kg3 Ty 1)+ (2.10)
We also note that G(7,u; 75, it j) has the following Fourier
integral representation:

(r-7
M — o) o, €T
G H
(T B3 Tor “0) 27 f‘ 1 + zKu
If we now multiply Eq.(2.6) by G(7,— u; 7, — tig), Eq.

(2.9) by 1, (7, u), subtract one equation from the other
and integrate with respect to p from — 1 to 1 with re-
spect to 7 from 0 to © and use the reciprocity relation
(2.10) and the Fourier integral representation of

G(7, k3 Tg» L), We obtain the Fourier integral representa-

tion of 1 n,m('r, 1) which is given below:
1 o0 eiKT

I T, W)B(1) = — dK

(T2 O(T) = oo [ AK

SEARCES xR n) @10
7=

where O(7) is the Heaviside step function and, in Eq.
(2.11),

Ry jml 1) = [ a7 € oy(n) [ a'S; (13 ), (T, ).
(2.12)

We shall refer to the quantities R, ; ,, defined by (2.12) as

the "restricted Fourier amplitudes.

We note that once the restricted amplitudes R, 5, mUEs 1)
in Eq.(2.11) are determined (subject to the approprlate
boundary condition at 7 = 0), then the components

= (T, 1) are also determined everywhere. It is clear
from the same equation that in principle one can, for any
value of » (and j),always write down R, ; ,(K; u) in
terms of the known quantities. For instance, for n = 0,
we have

Io, {7y WO(T) = I, (0, )™+ O(1)

Since /;, (0, p) for p > 0 is known from the boundary
condition at 7 = 0, one may then merely use (2. 13) to
substitute for I, m(‘r, @) in (2.12) and obtain R, ; . (K; 1)
for all values of j. Physically, Eq.(2.13) descr1 es the
situation in which the radiation entering at 7 = 0 has
suffered no scattering in the atmosphere. In the next ite-
ration, upon computing R, ; ,.(K; u), one then determines

(2.13)

J. Math. Phys., Vol. 14, No. 7, July 1973

889

I, (7, ) [subject to the boundary condition I, (0, p) =

0 for p > 0] which corresponds to the component of the
radiation which has been scattered once and so on. This
procedure is obviously cumbersome and restricted in
usefulness to media which are highly absorbing.

Furthermore, the task of obtaining R, ; (K; ) for arbit-
rary values of #» (and j) is too much and unrevealing. For
that reason we appeal to the procedure discussed in

Ref. 1. Our point of view will be to reexpress Eq.(2.11)
as a spectral integral? in which the unknown coefficients
obey a relatively simple recurrence relation. We shall
find that such coefficients are precisely the difference of
the boundary values, about the branch cuts, of R, ; UG 1)
in the complex K plane. Therefore, in order to obtain the
appropriate spectral representation of I, (7, u), our
first step would be to investlgate the properties of the
analytic continuation of R, ; . (K; u) in the complex K
plane. Said in another way we must first determine the
spectrum of the iterated transport operator of Eq. (2. 6).
We remark here that, as pointed out by Case and
Zweifel,5 the main difficulty one encounters in treating
the inhomogeneous atmosphere is in the determination of
the spectrum of the transport operator. However, in
several cases of interest, we shall show that it is pos-
sible to obtain the appropriate spectra.®

Singular properties of 7, j m (K u)

Let us first introduce the quantities 7, , ,(K; ) defined

by
20 i ? ’ ’
Tl w) = [7 a7 e[ dp’ S, (1, ), (T, 1)
(2.14)

For reasons which will become clear soon, we shall re-
fer to T, , ,.(K; p) as the "generators of Rn 1, mlKs )"
Now a reélation between T,,nandR, , is'Teadily de-
rived by taking the Fourier’ transform of Eq.(2.11) with
respect to 7, then multiplying both sides by S, ,(u, 1'),

and integrating with respect to p. The result is

fl z,m(“, K

K
,,zm( J M) = 1+iK[J.'

X [p.’

Further ,by comparing the definitions (2.12) and (2. 14) of
(K ;u)and T, ,  (K; 1), respectively, we also con-
cfude that

N
Lm0 1) =% 20 Ryoy K u’)] . (2.15)
£

1 , ,
Rn.l,m(K; IJ-) =51; j;: dK WI(K'_ nl m(K,‘J.) (2.16)
where

W(K' —K) = f0°° dr et &= Ky (1), (2.17)

It is because of the convolution integral relation (2. 16)
we wish to call T,, , (K; p) the generators of R, ; o(K; ).
Here we have assumed that the "correlation functions"
W, (K’ — K), defined by Eq. (2. 17), exist. In fact Eq.(2.17)
is actually an identity. The most important point, how-
ever, is that Eqgs. (2. 15) and (2. 16) will determine the
complete spectrum of the iterated transport operator of
Eq.(2.2). We shall now examine that spectrum as far as
it is possible.

First of all it is clear from Eq.(2.15) that the T, , ,
(K; 1) are sectionally holomorphlc in the complex K
plane cut from K = i toiwand K = — i ©to — i, Further
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T, .., m(K; 1) may have additional branch cuts and poles
(possibly none) which will be determined by the correla-
tion functions W(K’' — K) [see Eq.(2.17)]. Equation
(2 16) will then determme the analyticity properties of
R, , »(K; p). Thus,in order to determine the analytical
structure of T, m(K, u) and R, , (K; u), it is important
to know the corresponding properties of W/(K' —K). To
illustrate these ideas, let us consider a s1mp1e example
in which the index of degeneracy N of the phase function
[see Eq.(2.4)] is zero and wy(7) is exponentially decay-
ing.

3. APPLICATION (N =0)

Exponential albedo

In the integral representation (2. 11) for

L, w7y 1) we
set N= 0 and let

wo (7) = we™eT, (3.1)

where w and o are nonnegative constants for a given
frequency. Then, we have

In.m(T, U')e(’r)
-1 f°° dK _ewr

o - 1+ iKu[“I”'”‘(O’ W)+ 5 Ry, i )

(3.2)

where now

R, ,(K;p) =w fo°°d7 e Tl [ 11 ap’ S,(1y ), (T, 1),
(3.3)

For the sake of convenience we have omitted the sub-

script j = 0inR, _, ; mliks ). Corresponding

to functional relatlons (2 16) and (2.17),

fld , S, ne'l, (0, u")

T K;
w, mlE 1) = 1T K
L[ty Sulks WIR, 3 (K5 1) (3.4)
2 " .
-1 1+ iKy'
and
W Ll Tn m(K'; “)
R K; = — — dK' —————— 3.5
nmlE 1) 2mi Lo K' — (K —ia) (3.3)
where, in Eq. (3. 5), we have used the fact that
0o w
K — —_ dt eiT(K'-K) e —_——
et k) fo wo(7) iK' — K + ia)
(3.6)
Now, by substituting T, ,(K; 1) in Eq.(3.5) by (3. 4), we
obtain
S ), (0, 1)
R, (K;u) =— iwfo1 du’ n{tts 10, 0,

K —i(a + 1/u")

w w R4 (K51
+ —_— d 14 S ’ 3
ami L3’ Snlns 0] (1 + iK' p YK’

(3.7)

In principle Eq.(3.7) will determine all the restricted
amplitudes R, _ (K; i) in terms of known quantities.
For instance, under the boundary condition

In,m(o’ #) = 6nOIO,m(o, u)’

where I, (0, 1) is known, the first two amplitudes, for
n=0andn = 1,are

u>0, (3.8)
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Sulbs )My, (0, 1)
K—i(a +1/p")

Rg, K;u) =— iwfol dp’ (3.9)

and

iw2 1
= L, avaf dug Sulu 1) S (ks 12 To, (0 o)

N [ O(uq)
pilK =il + 1/ p)[K —i(2a + 1/ p,)]

_ O(— puy)
plK —i(20 + Yu) o + 1 py — 1/u1]:|‘ (3.10)

However, as mentioned previously, the resulting Fourier
integral representation of [, (7, 1), given by Eq.(3.2),is
not suitable for the purposes of numerical computations.
For that reason we shall examine the singular proper-
ties of the analytic continuation of Rn'm(K; ) in the com-
plex K plane. In particular, since the exponential term
in the integrand of Eq.(3.2) is convergent in the upper
half of the complex K plane, we shall analytically con-
tinve R, ,(K; ) in that part,

Singular properties of R, (K, u)

(1) From Eq.(3.7) one may readily conclude that
& 1) has a sequence of branch cuts at K =
z["J + 1)a + 1] to io,j = 0,1,2,...,n.

(2) R, (K;u) bhas no poles for any value of z.

(3) For real values of K and any value of 2, R, (K; 1) is
regular,

(4) From property (1) and Eq.(3.4) we conclude that
T,,(K; u) has a sequence of branch cuts at k = ¢
(ja + 1) to iw,j =0,1,2,...,n.

(5) From properties (1) and (4) given above and the
relation (3. 5) between Rn'm(K; () one may readily show
that the difference of boundary values across their res-
pective branch cuts bear the following relationship to
each other:

Ry (K5 p)—

R, (K p)

(K —da;p) — T, (K —ia; W] (3.11)

where K takes any value on the ray K = i(o + 1) to io in
the complex K plane and + (—) represents the boundary
value as K approaches the branch cut (the ray) from the
left (right). In particular if we shift the arguments in
Eq.(3.11) by replacing K by K — ija, then

R} (K —ijo;u) —R, (K —ija;pu)
= @[T} (K —i(j + Vo; p) — T, (K —i(j + Da; p)]
(3.12)

where now, for fixed value of j, K takes any value on the
ray K = i[(j + 1)a + 1] to é=. In the complex z = (i/K)
plane the identity (3.12) becomes

v - v,
R (1“"]'0'; > —R"'"'<1——vja’ u)

= [ (oY)

" <1— u(; + 1)a;“)]

(3.13)
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for 0= v= 1/[1 + a(j + 1)], where + (—) represents the
boundary value as z approaches the branch cut (the ray
0=v=1/[1+ a(j + 1)] from the top (bottom). In other
words, on the semi-infinite positive real axis in the
complex z plane,R, , (1/(1 — vaj); u) and T, (1/[1 —
a(j + 1)]; p) are regular for v > 1/{1 + a(] +1)].

(6). Finally from the analytic continuation of Eq.(3.4) in
the upper half of the complex K plane, or more con-
veniently in the corresponding part of the z(= i/K) plane,
one obtains the following relation between the boundary
values of R, , (z; u) and T, (25 1)t
Ry (viv) +R._, (v;v)=—4v, (0,v)

_2_ m(": B — n vl V3 )
my S, (v, 1)
1 dp’ S, (p ,u)
+;1—r—@f1 v—up' S,(v, 1
R__ -1, (Vs i ],

n-l m( HIT)
(3.14)

where @ represents the principle value and + (—) repre-
sents the boundary value from the top (bottom) in the
complex z(= i/K) plane cut from 0 to 1.

It is worthwhile to recall here that, in the complex 2
plane, R (%3 1), for a given value of n, has a sequence
of branch’cuts at z = 0 to 1/[(] + Do £ 1],j=0,1,...,n
[see property (1) above] while T n, (25 1) for a ﬁxed n
has a sequence of cuts at z = 0 t6 1/(ja + 1), j =
0 1,...,n [see property (5) above]. In consequence

R, .(z;u) are regular for z > 1/(1 + a).

We shall now obtain the spectral representation of
In'm('r, 1), the procedure for which is exactly parallel to
the one discussed in Ref. 1.

Spectral representation of / n m(‘r, u)

Let us consider the Fourier integral representation
(3.2) of I, (7, u). We note that the integrand in the
second term on the right hand side has a pole at K =

i/ u and, by property (1) of R,_; .(K; u),2 sequence of
branch cuts in the upper half of the complex K-plane
starting at K = i{(e¢ + 1) to ¢, Since u can vary con-
tinuously between — 1 and + 1, we distort the path of
integration, as shown in Fig. 2, surrounding the cut start-
ing at K = 7, and obtain

I (T, WO =1,
1 1/1+ad dy

20, 1) e 7RO (1)

- v . - -
T T T T B = By (]
1 -
Yt RO(WIR Ly (s ) + R (51, (3.15)

where we have set K = i/z and noted the fact that
R,_; .(z;u) is regular for z > 1/(1 + @), hence the
upper *limit of 1/(1 + a) instead of unity. We may eli-
minate the last term on the right-hand side of (3. 15),
Which involves the sum of boundary values of

(23 1), by means of the boundary relation (3. 14).
Furt'her use of Eq.(3.11) then yields

L, Ty WS u(p, V)O(T) =T, (15 v)e 7/ 10(p)

1/(1+e)
+ S, 0) av' ¢, (we v’

XTotm <ﬁ7; u)/(l —av’)?
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FIG.2. Contour in the com-
plex K plane.

— we" f/ua(u)f_ll dv’ qbp(u’)sm(u’; V)

X Fn-l,m<1—_%“ ;V’Ml —op?, (3.16)
where
T, n(u;0) = — (1/21u2) [T, (43 0) — T3, (5 V)]
(3.17)

and we recall by virtue of property (5) given above that

L, o(u/[1—a(G+Dpl;»y=0 for

p>1/1+a@+1}, =01, (3.18)
Also the functions ¢,(u) are defined by
_v 1 A(W) + A(V) 50, 3.19
¢y(#)—§0’y_u+ p) (v—u) (8.19)
with
AR)=1— f (3. 20)

1z—u

We remark here that ¢,(p), given by (3.19), are the
familiar Case's continuum normal modes for the
medium which is homogeneous and isotropically scatter-
ing.

Equation (3. 16) is what we previously referred to as the
spectral representation of I, ,.(7, u). The unknown
coefficients T, {u; v) may be determined from the
boundary condition at 7 = 0. That equation, under the
arbitrary boundary condition

Ly om0, 1) = 8,015 ,(0, ), >0, @3.21)
is obtained by letting T — 0 in Eq. (3. 16), i.e.,
T, v) =08,01g , (0, )S,, (1, V)
+ wf_l av’ ¢,(v)S, (v, v)
XTyy (i) (L - 012 — w5y,
1/Ql+a)
X JT v gy (w)
XL ptm (ﬁ, u>/(1 —av)2, u>0. (3.22)

This is an integro-recurrence relation for the unknown
coefficients T,  (u,v) occurring in Eq.(3.16). If we
define the quantlty

= ¢l‘l (VO)Sm(VO’ V)’

then we may rewrite Eq. (3.22) as

av’ v’
1/(1+a)
Vo — I 0,
m(u,v)—w"fo 1—av)? 0’m< 1—av’>

(3. 24)

\ll,(‘j")(uo; v) (3.23)

X B, (V' u;v)
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where the B, ,, (¥'; u; V) are independent of the boundary
condition at 7 = 0 and are determined by

1 ” 1,
Bn+1,m(V1;“';V) = f_ldV “I’ﬁm)(V V)

XB, m (vl;—l—:“—a—“; v’)/(l —ap)?

Ve gy’ v’
A u——au—qf“fi’r”’msvwn.m(”ﬁrm; ‘

n=0,1,---, (3.25)

with

By vy s ¥) = 08(vy — u/(1 + aw)S,,(u;v).  (3.26)
We shall refer to the quantities B, , as the singular
cluster integrals. Once these cluster integrals are de-
termined from the integro-recurrence relation (3. 25),
the unknown coefficients I, ,, occurring in Eq. (3. 16)

are determined by Eq. (3. 24) subject to the appropriate
boundary condition. The total specific intensity is then
given by [see Egs. (3. 16), (2. 8) and (2. 3)]

1 « °0
e =— 5 8 e-im[e-f/vem)

2T 5=0 m=-o0

T, o)
S, (1, v)

1/(11’(‘1) V’ ,
+ wfo av'e,,(u)e ﬂan—Lﬂt(ﬁﬂr; )/{1 —avy?

S, (v, V)
S, (1, V)

X Fn—l,m(i___%?; l/') (1 — au_)z].

In particular, the reflected intensity (u < 0)at 7 =0 is

— we” ”“e(u)f_lldw ¢, (V)

(3.27)

av’

10, 9) _wz Z: - ’mfl/(1+u)(1__'_‘a_l},)5

n=0 m=-o00
V,
><¢u,(u)1“n_,,,<i~_—a—v7; ) p<o0. (8.28

For the albedo problem the boundary condition is
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Iy (0, 1) = 6(p — pgle’™, (3.29)
where (114, ¢o) = Q4 represents the incident angle.
Using (3. 29) in (3. 24), we get
T, a(u;v) = wnB, (no/(1 + aug); u; v)e ™%, .30)

The emergent intensity is then given by

i - 1/(1+a) av’
10,0 = Bt £ pimoreg (V00 2
Mmoo _
!
X ¢y,(u)3n,m<——0——; T V>, v < 0. (3.31)
1+ apg

We restate here that the singular cluster integrals B,
are independent of w and Eq. (3. 31) represents the
Neumann expansion for inhomogeneous atmospheres in
which the albedo for single scattering decays exponen-
tially. We also note that the B, , in the same equation
depend on ¢, which characterlzes the absorption pro-
perties of the medium under consideration.

ACKNOWLEDGMENTS

The author wishes to thank Professor William Irvine

for many enlightening discussions and useful suggestions.
This work was supported in part by NASA Grant NGL
22-010-023 and NSF Grant GP 22742.

M. Kanal, J. Math. Phys. 12, 2187 (1971).

’H. C. Van de Hulst, Astrophys. J. 107, 220 (1948).

3W. M. Irvine, Astrophys. J. 152, 823 (1968).

*By spectral integral here we mean the integral representation in
which the integral is over the spectrum of the transport operator
[here the operator corresponding to Eq. (2.6)].

K. M. Case and P. F. Zweifel, Linear Transport Theory
(Addison-Wesley, Reading, Massachusetts, 1967).

P. F. Zweifel, private communication. In order to not mislead the
reader, one must point out that the resolution of the identity for
the transport operator has not been proved. The method used in
this paper essentially corresponds to the determination of the
resolution of the identity corresponding to a maximal symmetric
operator. The spectrum is then obtained from the points of
nonconstancy of the spectral family. Thus, the procedure bears an
analogy with the one described- by Riesz and Sz. Nagy in their
book on Functional Analysis (Ungar, New York, 1965).



Local observables in the Dirac theory
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By a new method, the Dirac electron theory is completely reexpressed as a set of conservation laws
and constitutive relations for local observables, describing the local distribution and flow of
mechanical quantities. The coupling of the electromagnetic field to the electron is shown to be
determined by the definitions of the observables rather than by the Dirac equation. Planck’s constant
appears in the equations only in connection with the electron spin. The equations are most readily
interpreted by assuming that the electron is a structureless point charge, the spin and magnetic

moment arising from the dynamics of electron motion.

INTRODUCTION

Most experimental tests of the Dirac electron theory
pertain only to “global observables” such as average
energy, average momentum, and average angular momen-
tum. The theory actually contains much more detailed
implications about “local observables” which describe a
spacial distribution and flow of charge, mass, energy-
momentum, and angular momentum. The local observ-
ables of the Dirac theory have some peculiar properties
of which Dirac was undoubtedly unaware when the theory
was first formulated. These peculiarities deserve care-
ful study;first, because they can be expected to lead to
particularly sensitive tests of the theory if they can be
subjected to experimental scrutiny; and second, because
they furnish valuable theoretical clues about the inter-
pretation and significance of the theory.

A systematic analysis of the properties of local obser-
vables happens to be surprisingly difficult by conven-
tional methods. This paper uses an unconventional
mathematical formalism developed in Refs. 1 and 2 to
achieve a compact reformulation of the complete Dirac
theory in terms of local observables. The new method
greatly simplifies the derivation of conservation laws
and “relations” among local observables. The results ob-
tained are complete in the sense that the relations found
among the observables determine the theory uniquely.

It is believed that all significant relations among local
observables found by previous authors are derived here,
though they usually appear in quite different form and
often as only part of a more general relation. Because
of the considerable difference in method and viewpoint,
comparison of results is sometimes quite tedious,
though it can always be carried out by the method ex-
plained in Appendix A. Since the work of Takabaysi3 is
much more extensive than anything else in the litera-
ture on local observables, special effort was made to
compare it with the present work; exact agreement has
been found even on comparing some of the more com-
plicated and esoteric formulas, though the two ap-
proaches have not been compared in every detail.

The difficult problem of subjecting the theory of local
observables to experimental test will not be broached
in this paper, though it is hoped that the present formu-
lation of the theory will facilitate the task. What the
theory needs most is an experimental test of the pecu-
liar noncollinearity of velocity and momentum predic-
ted by eq. (5. 8) below. The problem of devising such a
test has engaged the attention of Costa de Beauregard
for many years; he has reviewed the problem in Ref. 4,
including some significant progress that has recently
been made. Reasoning by analogy with the Dirac theory,
Costa de Beauregard was lead to suggest tests for
asymmetry in the free space electromagnetic energy-
momentum tensor for circularly polarized light. This
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asymmetry implies that the energy flux in a polarized
light beam is not collinear with the momentum density,
the difference being due to the “photon spin.” In a
clever experiment, Imbert3 showed that this difference
manifests itself as a lateral displacement of a reflected
light beam with a magnitude and direction in complete
agreement with theoretical predictions. This success
makes it all the more likely that the analogous asym-
metry in the Dirac theory can somehow be tested ex-
perimentally.

It should be emphasized that the asymmetry just

alluded to does not reveal itself in the Dirac theory
when observables are defined in terms of operators in
the usual manner. The operator definitions refer only to
global observables, the local features being suppressed
by averaging (i.e., integrating over all space). The local
theory is more detailed, defining mechanical quantities
such as momentum and angular momentum densities

as definite functions of position and time. One local
observable, the probability density determined by the
Dirac wave function, is already widely used to predict
the electron charge distribution in an atom. The local
distributions of other mechanical quantities have not as
yet been associated with any experimentally accessible
effects.

To achieve a complete theory of local observables it is
necessary to go beyond the original assumptions of
Dirac. It is important to realize that the definitions of
observables in Dirac theory have far-reaching conse-
quences quite independent of the exact form of the Dirac
equation. The specification of observables in Diracs
original paper ¢ was incomplete in several respects.
His crucial assumption about observables was made by
adopting, without comment, the operator definition of
energy already used in Schrdodinger's theory. This was
all he needed to predict the energy levels of stationary
atomic states. Dirac’'s initial assumptions were not
sufficient to prove local conservation of probability.
But this deficiency was soon rectified7 by defining a
'probability current', which, in accordance with the
Dirac equation, has vanishing divergence and so des-
cribes a locally conserved quantity. This definition is
actually a new physical assumption, as the current
specifies a local flow (or at least, a “probable” or
“local average” flow) of electron charge and mass,
and tacitly attributes a constant ratio of charge to
mass density for the “smeared out” electron.

After the local distribution and flow of electron charge
was specified by defining a conserved current, the local
distribution and flow of energy—~momentum was speci-
fied by Tetrode's definition8 of an energy—momentum
tensor. It is remarkable that these definitions above
completely determine a local distribution and flow of
angular momentum, since in general continuum theory

Copyright © 1973 by the American Institute of Physics 893
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the angular momentum tensor is not determined by the
energy-momentum tensor. Thus no further assump-
tions are needed to determine a complete set of local
observables for the Dirac theory.

Once a complete set of local observables has been de-
fined, the wave function can be eliminated and the Dirac
theory completely reformulated as a set of equations
for local observables. Reformulation proved to be a
surprisingly difficult task. Many authors achieved par-

“tial results. But it was not until 1957 that Takabayasi®
developed a systematic approach and carried the refor-
mulation to completion. Unfortunately, physicists have
derived little benefit from his work, most probably be-
cause of its great complexity. However, much of this
complexity is unnecessary,because it arises from re-
dundancy in the admixture of matrix and tensor algebras
in the mathematical formalism usually used to express
the Dirac theory. Such redundancy is eliminated in this
paper by employing the “space-time algebra” developed
in Refs. 1 and 2.

Because of the much simpler method employed here, it
has proved possible to work out the relations among
local observables in considerably more detail than was
done previously, especially in Sec. 6 below. It should be
mentioned that the many relations among local obser-
vables derived below are not mutually independent. No
attempt has been made to select one particular complete
set of relations as more fundamental than another,be-
cause the desirability of any particular selection is de-
termined by the use to which it will be put. However,a
careful distinction has been made between those rela-
tions which are determined by the Dirac equation and
those which are not.

The particular properties of the energy—momentum ten-
sor which are determined by the Dirac equation are as-
certained in Sec. 2. However,the main aim of Secs. 1
through 4 is to determine those properties of local ob-
servables which follow from the definitions of the pro-
bability current by (1.3) and (1. 4) and the energy-
momentum tensor (2.3) as specific functions of the wave
function (1. 1), without appeal to the Dirac equation.
Since local conservation is essential to the notion of
probability density, the eq. (1. 4) which expresses local
conservation of probability is taken as part of the defi-
nition of the probability current even though it can be
derived from the Dirac equation (e.g., see Appendix B).
Of course, the mere fact that the Dirac equation implies
that the “current” (1.3) has vanishing divergence does
not entail that that particular quantity describes the
local flow of probability. It seems best, then, to say
merely that the Dirac equation is consistent with the
identification of (1.3) as probability current.

In Sec. 5 the Dirac equation is completely reformulated
in terms of local observables. It will be noted that the
electromagnetic potential does not appear in the re-
sulting eq. (5. 7). Therefore, the Dirac equation by itself
implies nothing about electromagnetic interactions of
the electron. Moreover, the reformulated Dirac equation
does not yield equations of motion for local observables.
Rather, it functions as a “constitutive equation”, ex-
pressing, as shown by (5. 8), the local momentum as a
definite function of the local velocity and spin. The
equations of motion for the local observables are just
the general conservation laws ascertained in Secs. 1 and
2. But these equations are underdetermined and cannot
be solved without the additional “constitutive relations”
provided by Dirac equation. Since these “constitutive
relations” do not involve the electromagnetic field, it
can be concluded that the coupling of the electron to the
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electromagnetic field is already completely determined
by the identification of (2. 26) as the equation for energy—-
momentum conservation.

The relation of the spin density to the local circulation

of charge in the Dirac theory is studied in Secs. 6 and 7.
Section 8 discusses the bearing of local observables on

the interpretation of quantum mechanics.

1. WAVE FUNCTION

This paper continues the reformulation and analysis of
Dirac's theory begun in Ref. 1. For the most part defi~
nitions, conventions, and results appearing in Ref. 1 are
adopted here with little or no comment. The relation to
the usual formulation of Dirac theory is discussed in
Appendix A.

In Ref. 1 it was established that the Dirac “wave func-
tion” ¥ = Y(x) can be written in the canonical form
Y =pl/2¢iQ/28R, (1.1)
The wave function does not have a direct physical signi-
ficance, and a crucial part of the Dirac theory is to re-
late  to observable quantities. The canonical decompo-

sition (1. 1) greatly facilitates this task and, in addition,
makes the geometric content of the theory explicit.

The spinor R = R (x) describes a Lorentz rotation at
every point x of space~time which takes an orthonormal
frame of constant vectors y, into the frame e = e (x)
according to the equation

e, =Ry R, (a=0,1,23). (1. 2)
The vectors e, and e, have direct physical interpreta-
tions in the Dirac theory. To emphasize its interpreta-
tion the vector v = e, = v(x) is called the (local) par-
ticle velocity (at x). In agreement with established par-
lance, the quantity

Vyo¥ = PRyoR =pe = pv (1.3)
is called the probability current and p is called the
proper probability density. Local conservation of pro-
bability is expressed by the equation

O (pv) =0. (1. 4)
With the identification of mp as proper mass densily,
(1. 4) expresses local conservation of mass. Equation
(1. 4) is a consequence of the Dirac equation,but it must
be emphasized that the physical interpretation given to
pv is an independent postulate of the Dirac theory.

The vector

s= % e; = s(x) (1.5)
is called the (local) spin (vector),and the bivector

S =isv =127ie3e0 =l§e2el =%R'y2‘le (1. 6)

is called the (local) spin (bivector). Either s or S can be
used to describe the spin of the electron; S is preferable
because angular momentum is fundamentally a bivector
quantity, but s has the advantage that vectors are some-
times easier to manipulate than bivectors. At any rate,
(1. 6) makes it easy to switch from one to the other.

The physical interpretation of S as angular momentum
need not be introduced into the Dirac theory as an inde-
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pendent postulate;it follows from the definition of the
energy—momentum tensor given in the next section.

The e, describe intrinsic properties of the electron and
so are independent of any coordinate system associated
with an observer. In contrast,the choice of the y  in

(1. 2) is a mere convention, though once that choice is
made, the R that gives the e  is uniquely determined.
The choice of the y  is disguised in the usual matrix
formulation of the Dirac theory as a choice of matrix
representation. A change in the matrix representation
is equivalent to a change in the choice of the v ,. The y
can always be related to a set of inertial (Cartesian) .
coordinates {x>} by the equations y, =9, x or y& =
Oxe,

Equations (1. 2) can be solved for R (see Sec. 17 of Ref.
2). One obtains

R = (AA)1/24, (1.7
where
A=e yo. (1. 8)

This is one way of exhibiting the dependence of R on the
e, ,but no further use of it will be made in this paper.
The important point is that once the convenient arbitrary
choice of the ¥y, has been made, then the Lorentz rota-
tion R is determined by eight (scalar) parameters. Five
of these are determined by specifying the velocity and
the spin directions. This much determines the plane of
e, and e,;the additional parameter X, which is needed

to fix the directions of ¢; and e, in the plane, is the
phase of the Dirac wave function.

The Dirac wave function ¥ is completely determined by
specifying the set of eight independent quantities:
{p,B,v,Sor s,x} (1.9)
Of these, p, v, S have straightforward physical interpre-
tations. Comments on the interpretation of g8 will be de-
ferred until the role of B in the Dirac theory has been
studied in some detail. The observable significance of x
is indirect, and it will not be convenient to make explicit
use of X in equations for local observables. Rather,the
energy—momentum vector, to be introduced later, will
contain an implicit dependence on the gradient of x.

2. ENERGY-MOMENTUM TENSOR

One of the key assumptions in Dirac's initial paper 6 is
that the total energy E of the electron in a stationary
state is to be obtained from the equation
(~1¥253,¥ =E¥, 2. 1)
where ¥ is a column spinor. Superficially, (2. 1)
appears to be identical to an assumption made by
Schrodinger in his first papers on quantum theory. But
something new is present because of the spinor charac-
ter of ¥. This becomes apparent when, by using the
spinor ¥, (2.1) is reexpressed in a form which is inde-
pendent of any matrix representation:

8, Wyor Fi = EY.

The equivalence of (2. 2) and (2. 1) is easily established
by the method of Appendix A. Comparison of (2.1) and
(2. 2) then reveals that the root of minus one on the left
of (2. 1) has a geometrical significance; it may be re-
garded as a representation of the spacelike bivector
Y2¥1 = éy3¥y = 405, which itself is a particular root of

(2. 2)
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minus one since (y,y;)2 = — 1. Moreover, this root of
minus one has a physical significance, for according to
(1. 6) it determines the direction of the electron spin. In
fact, it is only through (2. 1) or (2. 2) and its generaliza-
tions that electron spin finds its way into the Dirac
theory.

To complete the formulation of the Dirac theory, (2. 2)
must be generalized to give an expression for the energy
even when the electron is not in a stationary state, if
only because the wavefunction cannot be an eigenfunc-
tion of the energy in all inertial systems unless it is a
plane wave. Besides, (2. 2) determines only the energy
density, which is but one component of a complete
energy—momentum tensor.

The most straightforward guess at the required
generalization of (2. 2) is given by

T, = {vo¥v,@ Wryari# — eA W)}

- 2.3

=7i(y“ayzpi73w)s —epv, A, 2.3)
The second term on the right has been added to remove
the contribution of the electromagnetic field to the
electron's energy—momentum and so (hopefully) to
produce a tensor that describes only intrinsic properties
of the electron. To get the last line of (2. 3), the defini-
tion of velocity (1. 3) has been used.

That (2. 3) is a reasonable generalization of (2. 2) can be
shown by computing the average energy in “the inertial
system of y,”, namely

(E) = (E() = [d3%(T oo + epvoAy)
= fdsx(Yo‘pYoao‘lehﬁ)s:
where the integral is taken over the spacelike hyper-

surface of points x satisfying the equation x.y, = x, = 1.
If (2. 2) is satisfied, then

(2. 4)

(By = [ d3%E(yolyg¥)s = E [ d3xp, = E, (2. 5)
where
Po = Py = pv-yy = Wyo¥ro)s (2. 6)

is the particle probability density in the inertial system
of y,. It is very important to note the appearance of v in
(2.5) and (2. 3), for it shows that consistency of (2. 3)
with (2. 2) requires the conservation law (1. 4) and the
interpretation previously given to v.

Appendix A shows that (2. 3) is equivalent to Tetrode's
definition of the electron's energy—momentum tensor.
Though this tensor has been much studied with matrix
methods, something may yet be learned by analyzing its
properties with the methods of space~time algebra.

An energy—momentum tensor is a linear vector func-
tion of a vector variable. To be more specific, let
T (n, x) denote a flux of energy—momentum through a
hypersurface with normal = at the space~time point x.
Suppressing the x dependence, one says that T(n) is an
energy—momentum tensor. Since T is a linear function
of n =nty ,
"

T(m) =neT(y,) =nv T,. (2.7)
So an energy—momentum tensor is completely charac-
terized by the vectors T = T(y“),which specify the flux
in four independent directions. The components of the
Tu are

T, =T, v,. (2. 8a)
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Inversely,

T, = w

M (2. 8b)

With this, the T, for the Tetrode tensor can be deter-
mined from (2.3).

The conservation law (1. 4) implies the existence of
velocity streamlines, timelike trajectories with tan-
gents v = v(x) describing the local flow of the “proba-
bility fluid.” The proper energy-momentum density
given by

pp =Tw) = U“T“ (2. 9)
describes the flow of energy—momentum along the
velocity streamline. The vector p deserves a special
name, because it is one of the most fundamental quanti-
ties of the Dirac theory. The name local energy-
momentum or simply momentum is appropriate. Now
Tp can be decomposed in the form

T,=pv,p +N,. (2.10)
Because of (2. 9),N(v) = vkN = 0, s0 the N describe
the flow of energy momentum normal to the velocity
streamline.

Certain special properties of the Tetrode tensor are
determined by the Dirac equation. These properties
are most easily ascertained by studying the “trans-
posed” tensor defined from (2. 3) by

—T_“ =T, = yHiy,- (a“t,ldi'y:ilp)v - epv,,A“}

L (2.11)
=F (a“wzhw)v — epvA,.
First observe that
A [ , , -
h(ayd/z?,ﬂb)v =3 (apwl’}’;;‘p - ‘1”73341‘//), (2.12)

Also, note that the definition of the spin vector (1. 5)
implies 37y y,¢ = ps, so

2,(i05) = 5 (0,Wivgl + wivgd ). (2.13)
Hence
R OW)ivgd =y, wivgd)y + Olips). (2.14)

Next, recall the form of Dirac equation given in Ref. 5.

With a conveninet change in sign convention and explicit

introduction of Planck's constant, it can be written
EQOyiygy, = myy t eAy. (2. 15)

Multiply this on the right by y,¥ and use Y = peis as
well as (1. 3) to get
EOyiys§ =mpeid + eApv. (2.186)

Finally, combine (2. 9), (2. 11), (2. 14), and (2. 18) to obtain

wT, =T,y =mpe' + ps. (2.17
The pseudoscalar part of (2.17) yields
0. (ps) = —mp sinp. (2.18)

This says nothing, at least directly, about the Tetrode
tensor. But the scalar part of (2. 17) gives the trace of
the Tetrode tensor:

Ty = T“"y“ =mp cosf, (2.19)
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and the bivector part of (2.17) is

YT, = T, Ay* =i(@Aps) == 0. (ips). (2. 20)
This specifies the antisymmetric part of the Tetrode
tensor, as can be seen by expressing it in component
form:

A yo)- (TehyB) = Ay YAV T, =T, — T,
=iy Ay ADON(ps) = — € 080 2(PSB),

. (2. 21)
where €pvap = ~ VAV AV N Y5

By definition, the divergence of the correct energy-
momentum tensor must equal the density of force acting
on the electron. The divergence of the tetrode tensor is
determined by the Dirac equation. To evaluate it, first
note that

9, T = BP'T_P, (2.22)
because the divergence of the antisymmetric part of
the Tetrode tensor vanishes, as follows immediately
from (2. 16) or (2. 18). With the help of (2. 12), the diver-
gence of (2.11) can be written

3,T+ = i (Q2iyyd)y — ed, (PvAL). (2. 23)
To express the first term on the right on (2. 23) in

terms of observables, take the gradient of the Dirac
equation (2. 15) and multiply on the right by vy to get

E(O2Y)iyzd = m@OYW + e@AY)yod.

Again using the Dirac equation, rewrite the right side of
this expression to get

EO2yiy,§ = i-1(e2A42 — m2)ips + e(DA)pv

+ 2e(A-O)ygd. (2.24)
The vector part of this equation is
. r L . -
RO2iy )y, = ] (O2yiy @ — wiy,0%)
=pe(@QAA)-v + epvO.A + eA.O(pv)
= peF.v + ed, (pvA+), (2. 25)

where F = O AA. Substitution into (2. 23) and use of
(2. 10) yields

9,TH = pp + 8, Nk = peF.v = pf, (2. 26)
where a dot has been used to represent the “proper
time” derivative along the streamline by writing
v-0p = p. The local force f = eF-v is just the familiar
Lorentz force. This further confirms the compatibility
of interpretations given to T* and v. The striking fact
is that (2. 26) has exactly the form that classical elec-
trodynamics gives for the effect of an electromagnetic
field F acting on a charged current. Note that there are
no multipole force terms, such as would arise if the
electron had some complicated local structure. Thus,
according to (2. 26) the effect of external electromag-
netic forces acting on the electron is exactly what one
would expect from classical electrodynamics. The
peculiar features of the Dirac theory reside in the
specific nature of the T+,

The results above already suffice to show that the Dirac
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electron possesses an angular momentum which does
not appear to be induced by external forces. Observe
that, since 3, x =y, , (2. 26) implies

9, (TEAx) = ThAy, + pfAx. (2. 27)
And note that, by virtue of (2. 20),

THAy, =— a“Su, (2. 28)
where

S¥ = pishy¥ = p(is)-y# = p(SAv)- y# (2. 29)

= pvkS + pS-YHu.

So, with the definition

Jh = THAx + Sk, (2.30)
(2. 27) can be written

9, J# =pfAx. (2.31)

The right side of this equation can be identified as the
local torque, so J# can be interpreted as the flux of
angular momentum through a hypersurface with normal
y#. Moreover,J* consists of an orbital part T+#Ax and
an “intrinsic part” S#. The angular momentum flow
along the velocity streamline is described by the proper
angular momentum density,

J@) = v J = plpAx +9), (2.32)
where S = p~lv, S¥ = isAv is seen to be precisely the
local spin,as advert1sed in Sec.1.

The right side of (2. 29) is a decomposition of the spin
angular momentum density S* into a part pv#S which des-
cribes angular momentum flow along the streamline and
a part

Me = pS-ptv =P‘§‘[S, YHAU]: (2. 33)
which describes angular momentum flow normal to the
streamline. Using this, and the corresponding decompo-
sition (2.10) for T,, (2. 28) can be written in the form

pS + ppAv =y, ANF — 5 MH, (2.34)

where, of course,$ = v-08.

Equations (1. 4), (2. 26), and (2. 34) are local conservation
laws for mass, energy—momentum and “intrinsic angu-
lar momentum,” respectively. But they constitute a
determinate set of equations only when “constitutive
equations” have been specified which relate the basic
local observables p, v, S and p and expresses the fluxes
N u and M, in terms of them. In the general form given
above with a more general form for the local force than
is given in (2. 26), the local conservation laws hold for
any classical relativistic theory of continuous media as
well as for the Dirac theory. The peculiar features of
the Dirac theory are found not in the conservation laws,
but in the form it gives to the constitutive relations and
boundary conditions.

3. LOCAL MOMENTUM AND ANGULAR VELOCITY
From (1. 2) it follows that

=9 e

'yu'Dea p€a [ pCa

(3.1)

where
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= 2(6 R)R, (3.2)
Equation (3. 1) says that on dlsplacement in the ¢, direc-
tion, the frame {e } rotates with “angular velocity” Q,-

To see what physxcal significance such a rotation might
have, the angular velocity must be expressed as a func-
tion of local observables., To this end, introduce quanti-
ties P‘J and q, by the equation

) [ 5 5

P, +iq, =§(8pR72y1R —RyzylapR). (3.3)

Also, use (1. 6) to obtain
3

B =5(a R'yz'le +Ryyvq0, R) (3. 4)
and

B3, Ryyy R = (3,RR)ARy v, R) = Q8. (3.5)
The sum of (3.3) and (3. 4) yields

P, +iq, +3,5=9,S=73, Ry,yR. (3.6)
The scalar part of (3. 6) is

P,=Q,.S=%(@,Ryyy, R, 3.7

which shows that P measures the component of the
angular velocity in the local spin plane.

The pseudoscalar part of (3. 6) yields

q, =— (RN =—9,.(6S) =7 (,Ryyy;R)s (3.8)
which shows that g, measures the component of the
angular velocity in the plane orthogonal to the spin
plane. Finally,the bivector part of (3. 6) is

3,5 =13(2,5— s, = 2[,,5], (3.9
which measures the rate at which the spin plane changes
direction on displacement along 1

To find an expression for Q in terms of observables,
solve (3. 6).

—_ h _1
Q, =(,5+P, +ig)s
= s(@,vpst + (3,s)s7 + g, vs’t +P,S-1, (3.10)
where S-1 = |§]-28 = {s"1v and s°1 = — |s|-2s. The

quantity g can be expressed in terms of the spin and
velocity by relating (3. 10) to the derivative of the velo-
city.

= — g1 - -1
3, 0=8,.0v=s (v-aps)+a“v q,s1.

Hence

q, = v'a“s=—s-apv (3.11)
or
g =v*q, =—v.(0As) +v.0s =— s.0v + s- (Onv). 3.12)

An expression similar to (3. 11) can be found for P“ from
2
3,61 =9,-¢; =(e;-0,0)v + (€1-9,5)s71 + P,z ey
Thus,

3 7
P ,=—gey-3,6,=5e.0,6€, (3.13)
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Equation (3. 11) says that g, measures the rate of rota-
tion in the (vs) plane, while (3.13) says that P, measures
the rate of rotation in the spin plane though no physical
significance has been attributed to ¢, and e, separately.
Since P, itself is an observable, (3. 10) along with (3. 11)
gives the complete relation of Q , to observables.

A change of “phase” of the wave function by an amount
F-1A,i.e.,the spinor transformation

R —»Re M1

induces, by (3. 2),the change of angular velocity
Q“ - Q“ + apAs-l,

and by (3. 2), the transformation
P“ —>P“ +a“A. (3.14)

This shows that P, depends on the phase only through its
gradient.

The physical significance of P}1 can be ascertained by
relating it to the energy—~momentum tensor. Use (1.1)
and (3. 2) to write

8,¥ =3{2, In(pe®®) + @ }y.

Multiply this on the left by %iy,{ and use $Zyiys¥ =
pSv together with (3. 6) to obtain

(3.15)

B iy = {9, In(pei®) + Q1 (pSv)

={P, +iq, +9,5+ 53, In(peid)}pv

=1{P, +iq, + W }pv, (3.18)
where the bivector W, is defined by
W, = (peif) 13 (peisS) =3,S + 5@, Inp +13 ). (3.17)

The vector part of (3.16) is

ﬁ(a#w’yszﬁ)v =pP, —v-W,). (3.18)
Hence,

Ky, @ iygd)y = p@,F, + (vAy,)-W,). (3.19)
Write

P, =p, T eA, (3.20)

and compare (3. 19) with (2. 3) and (2. 10) to get
Tpu = pvppy + N;u/’ (3. 21)
where, with the help of (3.17),

Npu :Np')/y zp(U/\')/P)-I'VD

(3.22)
=pAy,)-8,S — ps“ayﬁ.
This shows that the p, introduced in (3. 20) are exactly
the components of local momentum introduced by (2. 9).
Equations (3. 7) and (3. 20) thus show how the local
momentum is related to rotations in the local spin
plane. In addition, (3. 22) expresses the components N v
of the momentum flux tensor in terms of local observ-
ables.

4, INTEGRABILITY CONDITIONS

The fundamental local cbservables v, S,and p are all
determined by the single spinor field R and its deriva-
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tives. Since R itself is completely parametrized by v, S,
and phase x,p must be completely determined by these
quantities and their derivatives. Since p depends on

the phase only through its gradient, the curl of p must be
a function only of the spin, the velocity, and their deriva-
tives. This function can be found in the following syste-
matic way.

Write (3. 2) in the form

9,R = :QR. (4.1)
Differentiate, to get

3,0, R=2(0,2, +29,Q,)R. (4.2)
But

3,8,R =0,3,R. (4. 3)
So

9,8, —9,9,= :e,,9,] (4. 4)

Thus the derivatives of the angular velocities are not
mutually independent. These “integrability conditions”
can be expressed as relations among observables by
using (3. 6). One obtains

3,P,—3,P, +i(d,q,—3,4q,) =13[3,5,8,5]S"1.  (4.5)
The bivector part of (4.5) gives nothing new since it is
just a consequence of the fact that S2 is a constant. The
pseudoscalar part of (4. 5) gives an expression for the
curl of g, ,but that is of little interest since the relation
of g, to the spin and velocity is already completely ex-
hibited by (3. 11). However, the scalar part of (4. 5) gives
the following valuable relations, first derived in a dif-
ferent form by Takabayasi3:

8,P, —2,P, =3[8,8,3,5]-51

il

(8,58,SS"1)g =S~ (3,v7A3,v + 9,509, 57%)

= isAVA[3,vA8,v + 9, SA3, s71]. (4. 6)
Since P, =p, + eA“,
8,p,—0,p, + eF, =(3,50,8).571, (4.7)

where

Fo=Av) -F=@,Ay,) - ONA)=03,A,-0,A,

are the components of the electromagnetic field.

It is worth emphasizing that (4.7) or (4. 6) depends on
the definitions of the local observables only and not at
all on the Dirac equation. Since it relates different ob-
servables, (4. 7) can be regarded as a kind of constitu-
tive relation. A constitutive relation that gives the full
dependence of p on v and S is obtained from the Dirac
equation in the next section.

5. PHYSICAL CONTENT OF THE DIRAC EQUATION

The conclusions of Sec. 2 are worth repeating. Equations
(1. 4), (2. 26), and (2. 34) are precisely the conservation
laws of mass, energy—momentum, and angular momentum
which are expected to hold for all physical theories.

The use of the Dirac equation to obtain these laws mere-
ly serves to show that the Dirac theory is consistent
with general principles. It can now be shown that the
real physical content of the Dirac equation is to be

found in the fact that it provides constitutive relations
among the local density, velocity, momentum, and spin.
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When these relations are put along side those relations
which follow from the definitions of the local observ-
ables in terms of the Dirac wave function, then the con-
servation laws become determinate differential equa-
tions describing the time evolution of the local observ-
ables.

To express the Dirac equation (2. 15) as a relation

among local observables, first multiply it on the right
by ¥ to obtain

E(OY)yyy @ =mpv + eApeis. (5.1)
Next use (3. 15) and (3. 6) to obtain
7o Wivavab = {0, (0¢%) + 2,08} 2 Ryyy, R
=9 ,(pett)s + (P, +iq, + apS)pe”’
= (P, + ig,)pei® + 3, (pe®9). (5. 2)
This implies
O yay ¥ = (P + gi)peid + O (peiss). (5.3)

Finally, equate (5.1) to (5.3) and use p =P — eA to get

pe B(p —iq) = pmv — O (peS). (6.4
The pseudovector part of (5. 4) yields

p(p sinf + g cosp) = 0. (pe*BiS). (5. 5)
The vector part of (5. 4) is

p(p cosB — q sinB) = pmv — O- (peiBS). (5. 6)

This quantity, multiplied by e/m,is commonly known as
the Gorden current and assumed to be the source of the
electromagnetic field produced by the electron. The
last term in (5. 8), then, is the divergence of a magnetic
moment density. This is consistent with the identifica-
tion of the magnetic moment in (6. 28) below.

Equation (5. 4) displays the physical content of the
Dirac equation as a relation among local observables.
The Dirac equation can be recovered from (5. 4) by
writing the local observables as functions of the Dirac
wave function and its derivatives, but it should be re-
membered that these expressions are physical assump-
tions quite independent of the Dirac equation.

The “Dirac relations” among local observables are
better expressed by multiplying (5. 4) on the right to get

p(p —iq) = pmeifv — 0 (pS) + i(AB)pS. (5.7

The vector part of (5. 7) gives the momentum density as
a function of velocity and spin.

pp = pmv cosB — - (pS) + p(¢S)-TB. (5. 8)

This is the simplest way to express the general non-
collinearity of velocity and momentum in the Dirac
theory. Note that a valid physical interpretation of
must account for the strange factor cosp, which reduces
the contribution of the “mass density” to the energy-—
momentum density. The last term (2S)-08 = (vAs)-0p =
vs-08 — sv-0Op shows a dependence of momentum on the
rate of change of §8 in the vAs plane,

The trivector part of (5.7) yields

—pg =pm sinBv + O-(psv) + (ALY (pS). (5.9)
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This can be reduced to simpler terms by using (2. 18)
and (3. 12) to get
$.08 = s-(O0Av) —v-0s =s.0v—v-(dAs). (5.10)
Since S-08 = (isAv)-0B = isAnvAOB =— s- (ivA B, the
first equation (5. 10) can be written
v.0s=s =s.{0Av) + s-((oAOR). (5. 11)
This is an equation for the rate of change of spin along a

velocity streamline, and so exhibits explicitly the physi-
cal content of the trivector part of (5. 7).

A number of important auxiliary formulas are easily
obtained from (5. 8) by utilizing algebraic properties of
the velocity and spin:

p-v=m cosB — (vAL))-S — (ES)-(vAE1B)

(5.12)
=m cosf— S- LAy + ivAOB),
v-OB=F=p-s1+S5.QAsY) =p-s1
+is~lavnOs, (5.13)
p-S=p18.O-pS) =—S.(5-0 Inp) +S-(3-9), (5.14)
vAp = p [D- (pS)Av — iSP (5. 15)

= p-10.(pis) — S + (S-0)Av — iS§.

Equation (5. 12) is an expression for the local energy
p-v that flows along a streamline. In the first term the
rest mass is reduced by the factor cos . The re-
maining terms involve the “normal gradient” vALl,
which shows that their contribution to the local energy
is determined by the flow of S and § onto the stream-
line.

By comparing (5. 15) with (2. 10) and (2. 20) one finds

ply AN¥ =S — ($.0)Av + iSB. (5. 16)
The same result can be obtained with more effort by
direct evaluation from (3. 22).

6. PROPER FLOWS

The reformulation of the Dirac theory as a set of con-
servation laws and constitutive equations for local ob-
servables has already been completed. But further in-
sight into the theory can be obtained by casting some of
the equations into different forms. It is particularly in-
teresting to study the flow of local observables along a
streamline. This can be approached systematically by
studying the proper angular velocity Q,i.e., the angular
velocity along a streamline:

© = 2RR =2(v-0OR)R = v:Q,. (6.1)

Here the Q are just the angular velocities defined by
3.2)

An expression for @ in terms of observables can be ob-
tained directly from the Dirac equation by utilizing the
identity

Q =2RR ={(OR)R,v} —Ovw. (6. 2)

The curly brackets denote anticommutator. The iden-
tity can be established by noting that

(OR)RvR =0Ry, = O(R) = (Qv)R — vOR + 20.0R.
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Now write the Dirac equation (3. 15) in the form

@ W)iyavel = 2(0Y%)PS = mpv + eApe s, (6.3)
Also note that

20uW = (3 lnp + (OB)i + 2(OR)R)peis. (6. 4)
Hence, from (6. 3) and (6. 4)

20R)R =— 0 Inp + 408 + (me'bv + eA)S1. (6.5)

So

${2(OR)R, v} = 2OR)R} -v

=—v-0lnp + v.(@3OP) + v-(mv cosf + eA)S-1,
(6. 6)

Finally, substitute (6. 6) into (6. 2) to get
Q=—0Av +v-(@0p) + v.(mv cosp + eA)S-1. (6.7)

By (6.7),the proper time derivatives of the velocity and
the spin are

v=Q-v=v.(0AD), (6. 8)
§=Q-s=s-(0n) + s.[v- (3B, (6. 9)
S = 3[Q,8] = £[S,0n0] + £[S,v-(DB). (6.10)

Equation (6. 8) is a mere identity, which depends only on
the fact that v2 is constant. Equation (6. 9) is identical
with (5. 11), and, of course, (6. 10) follows from (6. 8) and
(6. 9), though it is handier to get it from (6. 7). Clearly,
these equations are not of much help unless a useful
expression for OJAv can be found.

Before proceeding further, it is worthwhile to examine
the “classical limit”,i.e., the limit in which the magni-
tude of the spin |s| = 37 is regarded a negligibly small
quantity. In that limit, the compatibility conditions (4. 6)
can be written

OAP =0, (6.11)
This implies that
P =0x. (6.12)

It is easy to see that the scalar x is the phase of the
Dirac wave function, so the classical limit amounts to a
kind of “eikonal approximation” to the Dirac equation,

In the classical limit, Eq. (2. 18) becomes sin = 0,
which implies cos g = +1. In the same limit, the Dirac
equation in the form (5. 7) reduces to

= tmy =X — eA. (6.13)

Clearly, the two signs correspond to limits describing
particles with opposite charge.

The square of (6.13) is just the Hamilton—-Jacobi equa-
tion for a classical “test charge”:

(Ox — eA)2 = m?2, (6. 14)

Given the external potential A, one solves (6. 14) to get
X. But equation (6. 13) is still needed to get the velocity
field from x.

The curl of (6.13) is

+mOAy = — edANA =— eF., (6. 15)
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So, from (6. 7) the proper angular velocity is just

- _ =4+ &
Q=—0/ =2-_F. (6.16)
When this is substituted into (6. 8), one obtains the
Lorentz force.

But, more generally, (6. 16) gives a spinor form for the
Lorentz force:

R =35 FR. (6.17)
The solution of this equation is a one parameter family
of Lorentz transformations R = R(7) describing the rota-
tion of the e, as they “move” along a streamline. In
particular, this describes the rotation of the spin. So

the spin does not simply disappear in the “classical
limits” to the Dirac theory; only the effect of the spin

on the motion of the particle disappears; an effect of the

motion on the spin remains.

Now, to see what can be said about OAv without any
approximation, write (5. 7) in the form

(P + qi) — eA =mve ® — "W, (6.18)
where W, is defined by (3. 17). The gradient of (6. 18) is

(OP + Ogqi) — eDA =m[Ov — i(@AB)v]e 8 + yry o, W, .

(6.19)
The bivector part of (6.19) is
m[OAv + ivAOBle-i =—eF + 3 W
+ 4[y#ayy,0,W,] + @AP +OAgi). (6. 20)

The dependence on momentum in the last term can be
eliminated by using the integrability conditions (4.5)
in the form

OAP + OAgi = 94y¥[3,5,2,5]S1. (6.21)
Also, a little calculation shows that
o, W,—2o,W, +3[8,58,5]st= 3[W,, W,]s1, (6.22)

so the last two terms of (6. 20) can be combined. When
this has been done, (6. 20) can be written

DAU+iUADB=—%F€"B+C, (6. 23)
where
mC = i@ Wk + 3[yry?,[W,, W,]S 1)), (6. 24)

Equation (6. 23) is very important because it completely
describes the interaction of the external electromagnetic
field F with the “Dirac observables” in a manifestly
gauge invariant form. Section 5 shows that the electro-
magnetic field is absent from the basic relations among
observables implied by the Dirac equation. The electro-
magnetic field is related to the momentum solely by the
integrability conditions (4. 8). Equation (6. 22) expresses
the implications of the integrability conditions in a form
independent of p. And note that C in (6. 24) is manifestly
independent of velocity. The appropriate use of (6. 23)

is to eliminate OAv from equations to reveal explicitly
the influence of the external field F on relations among
observables.

The dependence of §2 on F is revealed by substituting
(6. 23) into (6.7) to get
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Q= %Fe"ﬂ — C + v-(mv cosp + eA)S-1, (6. 25)

This gives immediately equations for the velocity and
spin which show the dependence on F explicitly:

(Fe®).v +v.C, (6. 26)

v =

3o

§ = 3[F,Se®] + 5[5, Cl. (6.27)

In (6. 27) the commutivity of e?8 with bivectors was
used to obtain a form that suggests that

le

L = — Seis (6. 28)
m

be interpreted as the local magnetic moment. And, in
fact,

le] S| = leln

|M|=—m‘| | = 2m

(6. 29)

is the famous magnitude of the electron's magnetic
moment, which was the first striking consequence of
Dirac's theory. But the interpretation of the magnetic
moment is not so simple a matter as (6. 27) and (6. 28)
suggest, for (6. 25) and (6. 26) indicate that the factor
ei8 belongs with the F and not with the S.

Other important relations can be derived from (6. 25)
by using (3. 6) to get

v-(p + eA) +iv-q+S=QS

= —%Feiﬂs — CS +m cosB + ev-A
(6. 30)

The bivector part of (6. 30) just gives equation (6. 27).
But, with the help of (3. 11), the pseudoscalar part of
(6. 30) gives

v.g=—v-5=s-7=iCAS -—%(Fe"ﬁ)/\s]
e (6.31)
= W(Feiﬁy (sAv) + C- (vAs).
The scalar of (6. 30) is
pv=m cosB+<£Seif>-F——C-S. (6. 32)

The same result can be obtained by substituting (6. 23)
into (5. 12).

Equation (6. 32) explicitly shows the effect of an external
field F on the local energy.

Equation (2. 26) describes the rate of change of momen-
tum along a streamline, but it does not reveal the full
effect of the electromagnetic field F on the momentum
flow, because it does not show how the momentum flux
Nt is affected by F. The influence of F on the flux can
be found by beginning with the expression (3. 22) for
N, and evaluating 9 N* with the help of (2. 18) and the
integrability conditions in the form (6. 23). Thus,

8eN,, = pS-([@A2,0) — (3,0A0).(pS) — ps.03,8

— (0,8)0-ps

=— pS-a,,<7;1Feiﬂ - C)+ p(o,vATIB)- (iS)
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— (@ ,070)-(pS) —ma, cosp
=—p(s-au £ (Fei® — C) + (2,0nyH)- W,
+ma, cosﬁ). (6.33)
Substitution of this expression into (2. 26) yields
p=2Fv+20(Feir).§-0C-8
m m
+0 (v/\-yt‘).W“ + m0O cosB. (6.34)

Here a slash has been used to denote quantities which
are not differentiated by the gradient operating from the
left.

The second term on the right of (6. 34) is a force of the
Stern-Gerlach type. But note that the g is differentiated
whereas the S is not, so it is not quite the usual form
for the force due to a magnetic moment given by (6. 28),
Moreover, this force is not a body force; rather, as the
derivation shows, it expresses only the effect of the ex-
ternal field on the local momentum flux.

It is also important to realize that the influence of F on
the spin is entirely due to its effect on the spin flux.
This can be shown by beginning with (2. 34) and eva-
luating 9 “M # with the help of (6. 23). Thus,

a Mk =p3[S,0/] + $ oD, pS] (6. 35)
= p% [F:}%Seie] + p%[sy C] + -;—[U/\'y“,W“]-

Substitution of this into (2. 34) and comparison with
(6. 27) shows

PUAD + Y ANH = y ATE = 3ok, W, ]. (6.36)
It is not difficult to establish that this relation follows

from the Dirac equation without appeal to the integra-
bility conditions.

The above facts about the influence of external fields on
the local observables have important bearing on the in-
terpretation of the Dirac theory.

7. WEYSSENHOFF MOTION

The velocity streamlines of the Dirac theory compose a
congruence of timelike curves in space-time, and Eqgs.
(2. 26) and (2. 34) describe the flow of momentum and
angular momentum along these curves. The flow along
one streamline is coupled to that along its neighbors by
the flux of spin through the walls of a comoving volume
element. To get some conception of the streamlines in
the Dirac theory, suppose that along a particular stream
line the net flux of momentum and angular momentum
through the walls of a comoving volume element vanishes.
This supposition can be stated mathematically by
writing.

2, N =0, (7.1)

'y-“/\Nl1 = BHM”. (7. 2)
The equations of motion for a streamline satisfying
these conditions are decoupled from those of its neigh-
bors. However, the extent to which such a decoupling can
be justified either rigorously or as some approximation
to the Dirac theory is a difficult and unsolved problem.

Along the “decoupled” streamline just described, Egs.
(2. 26) and (2. 34) take the simple form
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p=1
S=v/\p.

(7. 3)
(7. 4)

The relation between velocity can be found by multiply-
ing (7.4) by v and solving to get

p=v(p~v+S)=(p-v)v+v-S‘. (7. 5)
Of course these equations must be supplemented by the
conditions that v and S are orthogonal and have constant
magnitude.

Equations (7. 3), (7. 4), and (7. 5) were obtained from a
model of a fluid “with spin” by Wessenhoff?; they have
been studied by many authors as a “classical approxi-
mation” to the Dirac theory; details can be found in
books by Corbenl® and Halbwachs!l, Of course there is
nothing surprising in the fact that these equations can
be obtained from a classical model;they require for
their validity only general conservation laws and the
assumptions that decouple the streamlines. The classi-
cal models become unphysical when they assume that a
continuous system can be shrunk to a point particle
obeying (7. 3) and (7.4). For insight into the Dirac theory
it is sufficient to suppose that the equations describe
only a single streamline.

Thé interesting point is that the equations for the de-
coupled streamline can be solved. In the absence of ex-
ternal forces the streamline is a generalized helix.
This helical motion persists in the presence of a con-
stant magnetic field and, as Corben10 has repeatedly
emphasized, gives the correct gyromagnetic ratio for
the electron, the simple number for which the Dirac
theory is most famous. Thus, however dubious the de-
coupling assumptions, the decoupled equations retain
some of the main features of the Dirac theory. And
their solutions suggest that the magnetic moment of the
electron is not due to any structure of the electron; it
appears to be a dynamical effect,arising from the
general tendency to execute helical motion because of
the noncollinearity of velocity and momentum.

8. INTERPRETATION OF THE DIRAC THEORY

The set of local observables adopted in this paper is
complete and thoroughly satisfactory in the sense that
the entire mathematical content of the Dirac theory can
be expressed as a system of determinate equations for
these quantities. On the other hand, the physical content
of the Dirac theory depends on the physical interpreta-
tion accorded to the local observables, that is, on the
correspondence of the mathematical quantities called
observables with quantities measured experimentally.
Unfortunately, this correspondence is not so well esta-
blished as to eliminate the possibility that thé local ob-
servables have been incorrectly identified or that the
Dirac theory is incorrect in some of its more detailed
implications.

There does not seem to be any reason to doubt that the
local velocity (1. 3) has been correctly identified. The
identification adopted here leads to a reasonable inter-
pretation of the energy levels in hydrogen, which seems
to be the reason it was originally accepted by the Dirac.
To say that it has been universally adopted by practi~
tioners of the Dirac theory would not be much of an
exaggeration, o

The correctness of identifying the Tetrode tensor (2. 3)
with the energy—momentum tensor can be questioned. It
is easy to write down different tensors which yield
identical values for global observables such as the
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energy levels of stationary atomic states. Each such
tensor defines a different physical theory distinguished
by the particular local distribution and flow of energy-
momentum it predicts. No such distinction has as yet
been tested experimentally. Nevertheless, there are
good reasons to favor the Tetrode tensor.

Tetrode's definition of the energy—momentum tensor is
adopted in this paper on the theoretical ground that it is
the most straightforward generalization of the operator
definitions of energy and momentum taken over by
Dirac from Schrddinger theory. Perhaps a better
reason for adopting the Tetrode tensor is the fact that
it leads to the classical Lorentz force (2. 26);this seems
to have been Tetrode's original reason. Also, on close
inspection it becomes clear that no alternative to the
local momentum (2. 9) determined by the Tetrode tensor
could lead to simpler equations for local observables.
Finally, it should be mentioned that the successful pre-
diction of the Imbert effect4.5 was made from a non-
symmetric electromagnetic energy-momentum tensor
obtained by analogy from the Tetrode tensor. Thus the
Tetrode tensor is supported by indirect experimental
evidence. The challenge is to test it directly.

In the absence of any experimental or theoretical
reason to doubt that the identification of local obser-
vables has been correctly made, it is necessary to deve-
lop a coherent interpretation of the Dirac theory which
is consistent with the present identifications of local
observables. Any satisfactory interpretation of the
Dirac theory must explain the prominent role played by
spin. In Dirac's original paper® the appearance of spin
is rather mysterious, since no mention of spin was made
in his basic assumptions. It is still widely believed that
spin emerged as a consequence of relativity, though this
has been refuted by many authors (e.g.,Ref. 12). With a
complete theory of local observables in hand, it is not
difficult to ascertain the key assumption by which

Dirac (implicitly) introduced spin into his theory. The
derivation of the local conservation laws in Sec. 2

leads to the identification of the local spin in Eq. (2. 23).
Following the argument backwards, one discovers that
spin was introduced by the definition of energy (2. 1),in
particular by the factor (— 1)1/2% in that definition. The
usual matrix formulation of the Dirac theory hides the
relation of (— 1)}/2% to spin very well indeed. But the
relation was uncovered in Ref. 1 when matriees were dis-
pensed with. The relation can be explained succinctly
as follows: In the Dirac theory the spin is a skew sym-
metric tensor, or, equivalently, the bivector defined by
(1. 6); the usual matrix representation of this bivector
has eigenvalue 3 (— 1)1/27,as is shown by Eq. (Al).
Thus, the factor (— 1)1/27 which appears in the matrix
formulation of the Dirac theory is a representation of
the spin tensor by its eigenvalue;its true identity is
revealed by reformulating the theory in terms of ob-
servables,

It is important to note that (— 1)¥/2 and # always occur
together as a factor (— 1)1/27 in the original basic
equations of Dirac, specifically, in the definition of the
energy operator (2.1) and in the Dirac equation (A5)

of Appendix A. It follows that Planck's constant is in-
separably related to the spin in the Divac theory. So it
should be no surprise that examination of Secs.1 to 5
reveals that Planck's constant appears in the equations
for local observables only as twice the magnitude of
the local spin.

The ubiquitous connection between spin and Planck's
constant obviously must persist in any nonrelativistic
approximation to the Dirac theory, including the



903 David Hestenes: Local observables in the Dirac theory

Schrédinger theory. Indeed, as shown explicitly in Ref.
12, the Schrodinger equation is identical to the Pa_uli
equation in the absence of magnetic fields, and spin
appears in the Schrédinger theory as the innocent fac-
tor (— 1)1/2%, It follows that every appearance of
Planck's constant in the Schrodinger theory is directly
related to the existence of spin. This fact is difficult to
reconcile with the usual interpretation of uncertainty
relations derived from Schrédinger's equation. Though
Planck's constant has a prominent place in the uncer-
tainty relations, none of the usual interpretations seem
capable of accounting for its connection with spin. It is
strange that uncertainty relations for position and momen-
tum, which are presumed to be fundamental to the inter-
pretation of quantum theory, are not derivable from the
Dirac theory without suppressing spin.

The Dirac theory poses another difficulty for the usual
interpretation of the uncertainty relations. The non-
collinearity of local momentum and velocity suggests
that uncertainty relations for momentum and position
are not, as is usually assumed, equivalent to uncertainty
relations for velocity and position. Indeed, when the non-
relativistic limit is correctly carried out it can be
shown that the inequivalence of velocity and momentum
persists even in the Schrédinger theory. Details will be
given elsewhere.

Because of these problems with the interpretation of the
uncertainty principle, it is difficult to reconcile the de-
tails of the Dirac theory with the socalled Copenhagen
interpretation of quantum theory in general. But there
is an alternative interpretation which appears to be
more congenial to the Dirac theory. It is called the
statistical interpretation of quantum mechanics in a re-
view by Ballentine.13 According to the statistical inter-
pretation, an electron is always to be regarded as a par-
ticle, and the Dirac theory describes an ensemble
average of its motion. The probability density in the
Dirac theory specifies the relative probability that the
electron is located at a given place at a given time.

The simplest model of an electron compatible with the
statistical interpretation is a structureless point
charge. Of course it is impossible to derive any such
model from the mathematical formulation of the Dirac
theory. But it is easy to see that the model is consis-
tent with many properties of local observables implied
by the mathematical structure of the theory. First,if the
charge and mass of the electron are actually localized at
a single point, then the “smearing out” of the electron by
any kind of averaging process must produce a distribu-
tion with constant charge to mass ratio, in agreement
with the Dirac theory. Second, if the charge of the elec-
tron were not localized at a point, then terms describing
the coulomb interaction between different elements of
charge would appear in the local conservation laws

and constitutive equations derived in Sec. 2 and 5; no
such terms exist;but this is to be expected if the den-
sity in the Dirac theory describes only the probable
location of a single point charge. Third, the fact that

the local electromagnetic interaction is described in

the Dirac theory by the Lorentz force is just what

would be expected for a point charge. Finally, if the
electron is assumed to be a structureless point charge,
then the electron spin and magnetic moments must

arise from some peculiar dynamical property of the
average electron motion. These last two points deserve
elaboration.

The coupling of a Dirac electron to the electromagnetic
field is completely described by Eq. (2.26). But (2. 26)
is exactly the “classical” expression for the electro-
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magnetic force on a local distribution of charge, the
socalled Lorentz force; moreover, the angular momen-
tum conservation law (2. 31) shows that the Dirac
electron has no local intrinsic magnetic moment such
as would appear in higher multipole moments of the
local charge distribution if the spin of the electron
were associated with some local structure of the elec-
tron. Thus, the electromagnetic interaction in the Dirac
theory differs in no way from that given by the “classi-
cal” theory of a local charge distribution.

It follows that the magnetic moment of the electron
arises from the circulation of the local charge distri-
bution. But what about the well-known theorem that the
“classical” circulation of a fluid with constant charge to
mass ratio and with angular momentum equal to the
known spin of the electron cannot give rise to the known
magnetic moment of the electron? That theorem does
not apply! Because it implicitly assumes that the local
momentum flow is collinear with the local flow of
charge. This assumption certainly does not hold in the
Dirac theory, nor, in fact, is it required even in
classical theories.

Exactly how in the Dirac theory the local spin is related
to a local circulation of charge giving rise to the ob-
served magnetic moment of the electron is difficult to
ascertain. But the problem is attacked in Sec. 6 where a
general expression for the curl of the local velocity is
obtained [Eq. (6. 23)]. Unfortunately, the physical signifi-
cance of the complicated term (6. 24) is difficult to
fathom, injecting some uncertainty in the conclusions
that can be drawn. Nevertheless, it seems that the
contribution of the electromagnetic field to the circula-
tion of charge is completely and explicitly revealed by
Eq. (6. 24). Indeed, the equation is shown to lead to the
well-known value for the electron magnetic moment in
Egs. (6. 26), (6. 27), and (6. 32). However, the relations
among local observables in these equations are given in
more detail than in corresponding equations in the
literature, and it appears to be no simple matter to in-
terpret them fully.

Valuable insight into the relation of charge circulation
to magnetic moment is given by approximation to the
Dirac theory briefly discussed in Sec. 7. The resulting
“Weyssenhoff motion” explicitly shows the correct
gyromagnetic ratio for the electron as arising from a
generalized “helical motion” which is a consequence of
the noncollinearity of velocity and momentum. It seems
reasonable, therefore, to suppose that the electron mag-
netic moment is but one consequence of the general
noncollinearity of local velocity and momentum. But a
great deal more study will be necessary before firm
conclusions can be drawn.

There seems to be no alternative to the point charge
model of an electron which is capable of interpreting
the details of the Dirac theory just mentioned. There-
fore, the hypothesis that the Dirac theory describes
some sort of average motion of a structureless point
charge ought to be examined very carefully.
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APPENDIX A: MATRIX FORM OF THE
DIRAC THEORY

There are a number of ways to establish the equivalence
of the formalism used in this paper to the matrix forma-
lism usually used to express the Dirac theory. Though
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this equivalence has already been established in Refs. 1
and 2, a brief discussion of how to translate expressions
from one formalism to the other should be helpful. The
simplest method is to replace the vectors Yu directly by
their representations as 4 X 4 matrices.

One can represent the vector y, by a hermitian matrix
and the vectors y,( = 1, 2, 3) by antihermitan matrices.
Some writing is saved by using the same symbols y

for both the vectors and their matrix representations.
But, when this is done, the symbol i = y,y,y,y, for the
unit pseudoscalar should be replaced by the symbol

¥s = YoY1Y273 usually used for the antihermitian
matrix which represents it, so as to avoid confusion
with the uninterpreted unit imaginary usually symbo-
lized by ¢ = v— 1 in matrix theory.

To express the Dirac wavefunction as a column spinor,
introduce a unit column spinor » which is simultaneously
an “eigenvector” of the matrices y, and y5y3v = va71
with eigenvalues 1 and i respectively; i.e., write

Yot =u and  yyy,u = iu. (A1)
This can be done, for example, with the matrices
1 10 0 0O
[0 |01 0 o
“=\o)r oT o0 -1 o)’
0 00 0-1
(A2)

7 00 0

{0 —Z2 0 0
Y2¥1 =\ o 0 i 0
0 00 —1

Now, considering the spinor i or Eq. (1. 1) as a matrix
operator, one obtains a corresponding column spinor ¥
by operating on u:

¥ = Yu. (A3)
The above specifications suffice to relate expressions in
the “space-time algebra” to expressions in the matrix
algebra. For example, in the space—time algebra the
Dirac equation can be written

EQyy,y, — eAY =miy,. (A4)
Considering this as a matrix equation, multiplying by u
on the right and using (A1) and (A3), one obtains the
usual matrix form of the Dirac equation:

(B0 — eAY¥ = yi(ifid, — eA,)¥ =m¥ (A5)
Equation (A5) may look simpler than (A4),but actually it
is not,because some of its properties depend implicitly

on the choice of matrix representation. Equation (A4)
is independent of any matrix representation,

Translation of expressions for observables from one
language to the other requires an understanding of the
role of hermitian conjugation in the theory. Observe
that hermitian conjugation of y, can be expressed as a
multiplicative operation:

¥l = Yoo (A6)
Let M be a linear combination of the v, and their pro-
ducts with veal coefficients. It follows from (A6) that
the hermitian conjugate of M is

MT= YOMYO’ (A7)
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where the tilde means reverse order of multiplication of
all products of the Yy Thus, from (1. 1), one obtains

¥ =R~61/2575p1/2 — p1/2e1/2675k, (A8)

1/28-1/2675RT. (Ag)

yi= YoWYo =P
The operation (A7) is essentially different and must be
distinquished from the complex conjugation of a scalar
in matrix algebra. The latter has no physical signifi-
cance if it cannot be reduced to the former, as is shown
by the fact that it has been completely eliminated from
the geometric language used in this paper.

From (A2) it is easily ascertained that

wut = 31 + yo)(1 —iyayq). (A10)
So
Yty = Yuutytyy = Yuu'ty
= i {W¥ + Yyl — Wray ¥ — Wysyall}
=1p{e®5 + v + 1?1885 — iysS}. (A11)

To get this last line, the canonical form (1. 1) for y and
the definitions of Sec. 1 have been taken over into the
matrix algebra; also,S =Ry y,R,Ryyy,7 R =
RygysR = ysRysR = y;8. From (Alf), it follows that
for any matrix M

Uty M¥ = Tr{¥hy M¥} = Tr{M¥¥t,}
= 3Te{MYP + Yyol — Wrevi¥ — Wrorey ¥}
= (Myd)s + Myyod)s — ilMy,y¥) s
— i(Myyoyyi¥) s

The trace of a matrix in the Dirac matrix algebra is
equal to four times the scalar part of the correspond-
ing multivector in the space~tine algebra, so with this
understood, the last line of (A12) has the same form and
value in both languages. This greatly facilitates trans-
lation from one language to the other. Thus, from (A12)
and the last time of (A11), one easily obtains the
following variety of equivalent expressions:

1%

(A12)

Tlygy, ¥ = Tr{y, ¥y} = 3 Tr iy Yyol}

= \bt}’o?’p\b)s = (')’;,\‘/')’o‘p)s = p(‘y“’l))s =Py, v =Py,
(A13)
. . i2 -
Wlyoy,vs¥ =1 Triy,vs¥¥ho} = 1 Triy,ys¥rsysd}
=3 Tr{y,Wya¥l} = 0(y,8 5 = py-§ = ps,.
(A14)
This establishes the equivalence of the usual expres-
sions for velocity and spin in the matrix language with
those adopted in this paper. In going from the left to the
right sides of (A13) and (A14),use has been made of
the fact that the trace of an odd product of the matrices
Yu vanishes, which is equivalent to the fact that an odd
product of the vectors Ya has no scalar part. Note that
the sole function of the ¢ on the left side of (A14) is to
cancel the ¢ which (A11l) shows to be hidden in the
matrix representation.

In matrix language the components of the Tetrode tensor
are
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_ GH o _ 1, - 1
Tw=7 h07,0,% — 8, ¥Tyoy, ¥ — €A, ¥lygy, ¥. (A15)

Using (A10) as before, one obtains
iWhygy,d,¥ =1 Tr {r,0, %) ¥}
= % Tr{y, 2, (1 + yo — ivayy — fysys ¥}
= i(y, 3 Wrvo¥)s + (7,8 WrsvaP)s (A16)

Two terms vanished in proceding to the last line of
(A7) because they are odd, which follows from the fact
that both y and 8 3 are even. Similarly,

i0 u‘I’T'Vo'Yu\I’ = i(')’;;‘l/’}’oa y‘I’) st (Y“‘P'Ys')’aa u‘l‘;)s
=i(y,0 Wyo¥)s — (8 WrsyaW)s-

The last line of (A17) follows by using the fact that the

scalar part of a product is unchanged by reversing the

order of multiplication. Subtracting (A17) from (A16)
and using (A13) one finds that (A15) can be written

(A17)

pr = h— (Y“a uw7573lp) S - epU“A v (Als)

which is the form used in the test above.

APPENDi{X B: DIVERGENCE OF THE JM

Equation (5.17) of Ref. 1 contains an error and should be
amended to read

0.J, =— 2m sinBe;-J, + Zei(e3/\e0/\J“/\A). (B1)

The two sentences following that equation should be
corrected accordingly.

In the interest of completeness, it may be worthwhile to
give the simple derivation of (B1) directly from the
Dirac equation. So multiply the Dirac equation (2, 15)
on the right by iyy3y,¥ to get

ROy ¥ =~ imbysy, ¥ — eifbyorsy, ¥
= — impe PR 7’3"’“}.2 — epiAR Yo7’37’pk
- impeiaeae“ —_ epiAeoe:,e“.

Write J, = Yy, ¥ and take the scalar part of this ex-
pression
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0.J, = @J,)s = 2Oy, P,

= —-% [impeite,d, + eAieseqd,]s,

. 2¢ .
0., =—2—;?— sinfey-J, — —hg(zezeoJ,,A)s- (B2)

The last term on the right can be written in several
different ways:

(z'e3e0J“A)s = i(eghegNd NA) = (ezelJ“A)S
= (ezel)-(J“/\A).
Equation (B2) with 77 = 1 is seen to agree with (B1) ex-

cept for a sign which comes from using a different
sign convention in the Dirac equation.

The divergences of the probability and spin currents
given by Egs. (1. 4) and (2. 18) are seen to agree with
(B2) when p = 0 and 3, respectively.
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On the solution of the partial differential equation
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It is shown that the solution of the partial differential equation II

LAV + kDY =0, (k354 kD)

subject to appropriate boundary conditions may be written as § = Z%_,a s, where the ,’s are the
solutions of the Helmholtz equation (7 + & 3)§s; = 0 and the a,’s are constants. The explicit forms
of the Ys,;’s in terms of the boundary values are also given. It is also shown that the solution of the
partial differential equation (572 + k%)*{ = 0 is obtained by means of a certain limiting procedure

from the solution of the nondegenerate problem.

In this paper we determine (subject to appropriate
boundary conditions) the solution of the partial differ-
ential equation

N
n (VZ + kz)ll/(l‘) =0, k2 = k‘zy i=j, (1)
i=1 ' ¥ J

in some three-dimensional domain V bounded by the
surface Z. The propagation constants %, are, in general,
complex numbers. In the case when N = 1, Eq. (1) re-
duces to the classical Helmholtz equation whose solu-
tion is, of course, well known.! In what follows we will
show that the solutions (1) may be built from the solu-
tions of the Helmholtz equation. We also treat the
degenerate case (i.e., when all %, are equal) and show
that the solution in this case may be obtained from the
solution to (1) by an appropriate limiting procedure.

The partial differential equation (1) is of the “elliptic”
type and elliptic equations of higher order have also
been studied extensively by mathematicians.2 However,
the results which we present here and which may be
obtained rather simply appear to be new. Equations of
the type (1) have occurred recently in the electrodyna-
mic theory of spatially dispersive media.3 Such equa-
tions arise rather naturally in the theory of integro-
differential equations, For example, consider the inte-
gro-differential equation

L,¥(x) =g [ d3r glr, r)¥(r), (@)

where g(r, r’) is a Green's function solution of the
equation

£,8(r,r’) = — 4md(r — 1'), 3)

and g is a constant. In Egs. (2) and (3) £, and &£, are
operators that are polynomials in V2, w1th constant
coefficients.

Upon operating with £, on both sides of (2), we find
that ¥ must satisfy the differential equation

L,8,¥ + 4npY = 0, “)

which may be rearranged in the form (1) where, how-
ever, some k2 may be identical. Hence, we may obtain
the solution of (2) by choosing the solution of (4) that
satisfies also Eq. (2).

We first obtain the solution of (1) for the special case
of N = 2. For this case we take as appropriate bound-
ary conditions the values of ¥ and V2¢ on the boundary
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of the region V.24 (For the general case one requires
the values of ¥ and its derivatives V27 up to order
¥ = N — 1 on the boundary Z). Thus, we require the
solution to the equation

(V2 + k2)(V2 + R)Y(r) = 0, k% = k2, (5)

with ¥ and V2{ assuming prescribed values on Z. In
what follows we exclude the cases of resonance.

Let G,(r,r’) and G,(r, r’) be the Green's functions
satisfying the equations
(V2 + k2)G,(r,r') = — 4n6(r — 1), i=1,2, (6)

which vanish on the boundary Z of the domain V, Let ¥,
and Y/, be defined by

(V2 + k3)¥(r) = ¢, (r), (7a)
(V2 + k) Y(r) = y,(r). (o)
We have the identity
ooy = (T2 — 2+ DIV | wi) | vale)
(kf — k3) T k3—k2 R R3]
®)

which holds as long as k% = k2. It is clear from (5) and
(7) that

(V2 + kDY, (r) =0, (92)
(V2 + k), (r) = 0. (9b)

The solution to (9) may be expressed in the form

Yy ) =— f ds’(v'2 + k%)w(r') ; Gy(r, ), (10a)

wz(r)—“—fzds (V2 + DY) 55 Gyl 1), (10b)

where Eqgs. (7) has been used and 9 /0n’ = fi* V’, where
n is the outward unit vector normal to the surface Z. In
Eq. (10) the prime on V2 and » indicates differentiation
with respect to the primed coordinates. We have thus
shown that the solution of the equation

vz + k%)(v2 + kg)zlz(r) =0, kF =k3
within some three-dimensional domain V bounded by
the surface Z is expressible in the form

Copyright © 1973 by the American Institute of Physics 906
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¥, (r)

_ Wl(r)
lll(l‘) k% — k%’

Ry — k3

where ¥, and ¥, are the solutions of the Helmholtz
equation with propagation constants 2, and k,, respec-
tively. The explicit forms of ql/1 and ¥/, in terms of the
values of ¥ and V2¢ on the boundary Z are given in (10).

We next discuss the generalization of this result corres-
ponding to arbitrary values of N. By integrating the
function 15, (22 + k)2 (2 — 2,)? with k2 = k2 (Z =3)
around a closed contour at infinity, one can easily prove
the identity

N .
1= 0 I (22 + k2), (11)
i=1 ‘i ’
where
Q; =j£li (ka - kiz)‘l. (12)

From (11) we obtain the identity

N N
VE) = Do L (V24 B0 = 2 a), (13)
where

v, = [ (92 + EDV). 19)

Note, that, for the case when N = 2, (13) reduces to (8).
From (1) and (14) we have that

(V2 + E2)Y, (r) = 0. (15)

Equation (15) is immediately solved to yield
Y, (r) = — & [ ds' [ (v'2 + k2 w(r) =5 G,(r,r'), (16)
: am 7T =i I on’ T E D

where G, (r,r’) are the Green's functions defined in (6)
withi=1,2,...,N. Note that (16) involves the value of
¥ and its derivatives V27 up to order » = N — 1 on

the boundary Z. As mentioned previously, these N boun-
dary conditions are sufficient to solve the Eq. (1) uni-
quely. On combining (15) and (16) we obtain5

Theorem:  The solution of the equation

N
I (v2 + k2)Y(r) =0, k2 =k32i=j,
i=1 i i ]

in some three-dimensional domain V bounded by the
surface = may be expressed as ¥(r) = 2, a,y,(r),
where the ¢, are the solutions of the Helmholtz equa-
tion [with explicit forms given by (16)] and the a; are
given by (12).

We now consider the equation
(V2 + k2)2y(r) = 0, amn

and show that its solution can be obtained from the solu-
tion of (5) be means of an appropriate limiting proce-
dure. To this end, we use the following lemma:

Lemma: The solution of (17) subject to the boundary
conditions that ¥ and V2¢ assume prescribed values on
Z is given by the limit as k, — &2, = % of the solution
to (5) that satisfies these same boundary conditions.

Lemma proof: Putting by = k and ky, = & + €, we
have from (5) and (17) that the difference 5¥ between
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the solutions to these two equations satisfies the
equation

(V2 + B2)[(V2 + R2)6yY(r) — €(2k + €)p(r)] = 0, (18)

where ¢ denotes the solution to (5). From (18) we con-
clude that

(v2 + k20 () = — gr [ ds[(972 + k20w ()]
X 5%—, G(r, ') + ex(r), (19)

where G(r, r’) is the Green's function defined in (6) with
kZ = k2 and A(r) is given by

Ar) = (2% + €)[¢(r) v [ ds'e ) 2 G, r’)]. (20)

Since 8¢ and V26¢ must (by hypothesis) vanish on Z,
(19) reduces to

V2 + E2)ay(r) = ea(r). (21)

From (21) we deduce that

W) = — 4= [ ds'ow (') 2 Glr, x)

— 47e fv d3v’'Axr’)G(r, r’). (22)

The first term on the right-hand side of (22) vanishes
since 6 = 0 on T. Moreover, in the limit of € — 0, the
second term vanishes giving &)/ = 0, which establishes
the lemma.

Making use of the above lemma, we have from (8) that
the solution to (17) is given by

Y ‘1/2(1') - l»"1(1')
Y{r) = lim (———-——k% e >

ko by =k
aY,(r) By, (r)
= lim 20 ok, (23)
k> Ry =k ok, ok,
where we have applied 1'Hospital's rule, On combining
(23) and (10), we obtain

yr) = 5;1% fz ds’ <(V’2 + k2)y(r) a—’—;—zn—, G(r, r’)

— 2Ry (r") % G(r, r’)> . (24)

Finally, we mention that one may use a similar proce-
dure for obtaining the solution of the equation

(V2 + B2)Ny(r) = 0. (25)

In particular, by following a procedure similar to that
used in proving the above lemma, it is not difficult to
show that the solution to (25) is given by the limit as
ky o ky =+ —>ky =k of the solution to (1). For
example, for the case when N = 3, one obtains

_ l ' ’ 0 ’
w(r)——4n fz ds <1P(r)$G(r,r)
02
dkon’

2
~ L@z e 2L
2k ok

- 8% (V72 + k2)29(r) 2 G(r, 1)

G(r,r’)

nl
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33
ok20on’

1 I ’
+ YTy (V’2 + k2)2y(r’)

The results obtained here appear to have widespread
applicability. A particular application in the electro-
dynamics of spatially dispersive media will be dis-
cussed elsewhere.
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Two Weyl systems, developed independently by Hepp and the author in connection with the (¢);

model, are shown to be equal. A cyclic vector is exhibited.

In Glimm's fundamental paper! on the (¢4); model,a
Hilbert F_, is constructed during the renormalization
of the Hamiltonian. Glimm conjectured that a represen-
tation of the CCR,or Weyl system,arises in a natural
way,as a “weak limit” on F_ .- Apartial answer was
provided by Hepp;2 who enlarged F _ via a Gel'fand—
Naimark—Segal construction to obtain a Hilbert space K,
on which a non-Fock Weyl system W is defined by weak
limits. Fabrey3 independently constructed a non-Fock
Weyl system W, by weak limits on a Hilbert space F,,
which is an inductive limit of Hilbert spaces containing
F

It is easy to identify K with a subspace of F, and to show
that W, is a subrepresentation of W,. At first glance,
Hepp's representation might seem to be a closer and
simpler answer to Glimm's conjecture. On the other
hand, the construction on F, makes stronger use of
bounded operators, has a larger supply of explicitly
described vectors, and hence is possibly a better setting
in which to answer technical questions (e.g., Eckmann
and Osterwalder4,5).

ren’

There is no physical reason to suppose that the repre-
sentations differ,and Eckmann and Osterwalder? have
conjectured that K = F_and W, = W, . We give a short
proof of this by verifying a conjecture of Hepp (Ref. 5,
p.117) that a certain vector is cyclic.

Let us summarize the notation, which is primarily a
mixture of that used by Hepp? and the author.3 Let F
denote the Fock space for free bosons with single parti-
cle space L,(R2). Let V = a*4(v) create four particles
in F with wavefunctlon vé L,(R8),defined in Ref.3. We
write V., =22, V,,,0= 0, where Vio = ag*4 (v;,) is the
truncation of V defined by

(2

jolk) = v(k) if max |kl € [a(j), min(a(j + 1),0))
1=i=4

=0 otherwise.

Here a(j) = 24, j = 1,and a(0) = 0. A family of dress—
ing transformations {T o}»J = 0,is defined by T,
exp;(V,,), where exp](x) =27 oxl/z' isa truncated ex-
ponent1a1 As a domain for these transformations we
take D,the set of vectors in F with a finite number of
particles and compact support.

The basic idea behind both representations is that the
following limits exist for all n,j,2 = 0 and ¢,y € D:

Wd,41,4,, ..., A,,¥)

=lm (T;,¢,4,4,..

0—00

AT, W)e O,

Here A(o) = 4! =7 izollv; ll2 and Ay = I. The A, belong to
the algebra ® generated by the operators in the set

{a(f),a*(f),N(B,),E ,,: f € J, p < o, m = 0},

where the test function space is
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J =1{f: p¢f € L,(R?),some € > 0},

N (B ) is the number of particles with momentum less
than’ p,and N(B,) = zhoo mkE,,, is its spectral decompo-
sition.

The representation Wy (f), f € J,is defined as follows.
Let £ be the linear space of elements #(4,,4,,...,
A,,0),A;c Band ¢ € D (® = &(¢) if 2 =0). Let M
denote the radical of the sesquilinear form <-,-> on
£ defined by

<¢(A1, L ;Ak’¢)5q’(Ak+ 1+ sAn: ‘P))

= W00(¢’A’;"")A’{5Abv1,'~ A,.,lP)-
Then K is the completion of D= £/M. We identify vec-

tors & with their cosets [®#] so that &, = &, if and only

if [, — ®,] = 0. Annihilation and creation operators
are defmed on D in a natural way by
AB(A,,.. A, 0) =®(A,A,,...,A,,0)

for A € ®. Let @ denote the algebra of all such A. Hepp
then shows that D is a dense set of analytic vectors for
®, especially for $(f), f € J,where o(f) =

2'1/2g a*(f) + a(f)] is a field operator in F. Finally,
Ww,(f) = exp[i¢(f)] is defined analytically on D and
extended by continuity to K.

The “exponential” representation W, (f), f € J,is de-
fined as follows. It is easy to see that T,,Dc T,,D for
j < k since

k
chw = Tko . nl exPi(VioN/
;: +
We may view T,D C T,D as sets by identifying the
element Ty thh TkHi_j,,1 exp; (Vm)x[/ Then F, is the

completlon of the increasing union D =UL,T; D equipped
with the sesquilinear form

(T]-(P, Tkl[/) = ij(¢’ V).
The Weyl operators W,(f) are defined on the dense

domain D as “weak limits” of Weyl operators defined
analytically on D:

=nZ=)Oij(¢,i¢(f)’ cees iB(f)/nl, ).

itimes

(T; 6, W,(£)T )

W,(f) then extends by continuity to F,. It is shown3 that
annihilation and creation operators are defined in a
natural way on D by

(T;0,AT W) = W;($,4,¥)
for A € B. Let Bdenote the algebra of all such A. Then
D is a dense set of analytic vectors for G, expecially for
¢(f), which generates W _(f).

Theorem: Let Q € F be the Fock vacuum. Then &(£2)

Copyright © 1973 by the American Institute of Physics 9209
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and T, are cyclic vectors for W,(f), f € J,and W (f),

f € dJ,respectively. Moreover, K=F and Wy =W, .
Proof: We first prove that T,Q is cyclic for W,(f),

f € J. Note that & is affiliated w1th the W* algebra

generated by W,(f),f € J,by Ref. 3, Theorem 3. There-

fore, given € > O,k = 0,andy € D, it suffices to find

A € B such that

1T, — AT 0l < €.

Now § = BQ,where B = Z¥_ a*m(w,) for some M <
and w,, of compact support. Each w_, is the L, limit

on a compact set of elementary tensor products. Hence,
by Ref. 3, Lemma 3. 6, and the fact that B commutes with
T,w,there exists an operator C € & such that T,y =
T,BQ is within €/2 in norm of CT,9.

It then remains to find an A for which
ICT, @ — ATl = ¢/2. (1)

Letp =2!=2*andR = CT, E0 ,where T, is defined

as the weak limit of T,,. Note that T, & B'but that

T,, is a finite sum of terms with kernels of compact

support. Also,E,,T,@ = T{Q,where the dressing trans-

formation T} is the truncation of T in which there are

no particles with momentum less than p in absolute

value. By the above reasoning and Ref. 3, there exists

a T « @ such that
lr — CTEOP)TOQII =< €/4.

Let A = CTEOP € ®. Then the left-hand side of (1) i

bounded by

/4 + (CT,— RT)Ql = e/4 + |ICT (T, , — Eop To)0,

(2)

og,p
where there is at least one particle with momentum
greater than p in absolute value in each term of T
E4,To- By Ref. 5, Remark 3.1, (2) is bounded by

€/4 + O(p=) =< €/2
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for p sufficiently large. Thus T,Q is cyclic for W (f),
fed.

Let us now imbed K C F_ as follows. We define a2 map 9:
£- Dby
08(A,,...,A,,¢) ‘A, T,0. (3)
Clearly 69 = 0 so that 6 induces a map, also called 4,
from D to . The map 6 is obviously an isometry, which
extends by continuity to an isometry from K into F,.
We may therefore view K as a subspace of F by
identifying & with 6%.

=A Ay -

Let us now prove that K = F,. We rewrite (3) with
¢ = Q:
0AA, - A,8(Q)=A A, A, T. (4)

Thus, 6A8(Q) = AT, for all A € @, so that B&(Q) C K is

identified with the dense subset (BTOQ of F,. Hence,

K F . Moreover, by (4), 4 is identified w1thA Letting
= (ch(f))i/j ! and summing over j = 0,we see that
K(f) is identified with W,(f). Finally, @(Q) is identi-

fied with T, and therefore is cyclic for Wy (f), f € J.

Remark: This theorem establishes a conjecture of
Glimm®: The cyclic subspaces and representations
generated by T.Q, j = 0,coincide. The result of this
theorem is implicitly understood by Eckmann.?

'J. Glimm, Commun. Math. Phys. 10, 1 (1968).

’K. Hepp, Théorie de la renormalization (Springer-Verlag, Berlin,
1969), p. 116.

3Fabrey, Commun. Math. Phys. 19, 1 (1970).

4J.-P. Eckmann, Commun. Math. Phys. 25, 1 (1972).

3J.-P. Eckmann and K. Osterwalder, Helv. Phys. Acta 44, 884
(1971)

3. Glimm, lecture at University of Toronto, 1970 (unpublished).

J.-P. Eckmann, Strassburg lecture, 1972 (to appear).
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In this paper, the wave-energy transfer in a system of three nonlinearly interacting waves is studied.
Sufficient conditions for the unidirectional transfer of energy into any wave from the remaining
waves and bounds for the wave amplitudes are established. Also, a relation governing the rates of
energy transfer between the waves is derived. The results are applied to a magnetized plasma with

three nonlinearly interacting waves.

. INTRODUCTION

The nonlinear interaction of waves in various mediums
such as plasmas has been investigated both theoretical-
ly and experimentally.1~® In most of these works, par-
ticular attention has been focused on the so-called ex-
plosive instabilities in which the amplitude of one or
more waves tends to infinity in finite time. For conser-
vative systems involving three-wave interactions with
well-defined phases, conditions for the existence of ex-
plosive instabilities have been established for the case
of weak interactions.5 In a paper by Wilhelmsson,
Stenflo and Engelmann3, a necessary condition for ex-
plosive instability is derived taking into account the
effect of linear damping or growth. Recently, a suf-
ficient condition for the nonexistence of explosive in-
stability is obtained by first deriving appropriate bounds
for the solutions of the differential equations governing
the dynamics of nonlinear wave-wave interactions.?7 A
fundamental aspect in the study of instabilities in such
interactions is the transfer of energy from one wave to
another. Here, the wave-energy transfer in a nonlinear
three-wave interacting system is studied. In particular,
it is shown that under certain conditions, unidirectional
transfer of energy into any wave from the remaining
waves can be achieved. This implies that continuous
extraction of energy from one wave or pumping of ener-
gy into one wave is achievable under suitable conditions.
The significance of these conditions in the case of a
magnetized plasma with three nonlinearly interacting
waves is examined in detail.

Il. SUFFICIENT CONDITIONS FOR UNIDIRECTIONAL
ENERGY TRANSFER

Consider the nonlinear interaction of three monochroma-
tic waves with complex amplitudes a,, a,and a, govern-
ed by the following set of complex ordinary differential
equations10:

daO " + 1 . *

—dt- =Jjwedg T U@ @4, Et-— =jwia, + pa4a;,

a, . ey
@ttt

with initial conditions at { = 0 given by
a0) =ay, i=0,1,2, (@)

where j = v—1 and (-)* denotes complex conjugates, w;
corresponds to the complex frequency of the ith wave,
and the u;'s are the coupling coefficients.

Let C 5 denote the complex vector space of ordered
triplets of complex numbers a = (@y,a,,a,). Consider
the following equations obtained by multiplying the
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ith equation in (1) and its complex conjugate by a} and a,
respectively and then adding the results:

dla,(t)l 2 = oIm (wi)|a,-(t) | 2 4 27],(2.(")), i = 0, 1, 2,
dt (3)
where
1@)) = Relutad(la; ()ay ). @

Since the energy of the ith wave at time £ is directly
proportional to |a;()]2, the term 7n,(a()) is directly pro-
portional to the rate of change of energy due to the in-
teraction of the ith wave with the remaining waves. The
constancy in sign of 1,(a(¢)) for all ¢ > 0 along a solution
a(t) of (1) implies unidirectional transfer of energy to
the ith wave from the remaining waves. In particular,
for the case where the energy of the ith wave at time ¢
is equal to C;la; ()] 2 with C; > 0, the positivity of
n,(a(t)) for all ¢ = 0 along a solution a(¢) of (1) implies
that the ith wave is gaining energy from the remaining
waves for all >0. Inthe sequel,we shall establish sufficient
conditions in terms of the parameters w;, u;,a4;, ¢ =0,
1, 2, under which unidirectional energy transfer is pos-
sible.

To simplify the subsequent development, we introduce
the following subsets of C:

Qf ={a,eC;: n,(alt;a,, 0)) = 0 for all ¢ > 0}, )
Q7 ={ay€C;: n,(al;a,,0)) < 0forall ¢ > 0}

for i = 0,1, 2, where a{¢;a,, 0) denotes the solution of (1)
at time ¢ corresponding to initial condition a, at £ = 0.
The significance of Qf and Q7 is that for a given set of
parameters w;, 1;, j = 0,1,2, QU Q7 represents the
set of all initial points a, for which unidirectional ener-
gy transfer is possible. Also,Q} and 7 correspond to
sets which are invariant under the family of transforma-
tions defined by the solutions for ¢ > 0 [i.e.,for each
fixed ¢ = 0, a(¢;-,0) is a transformation on Cg into Cg;
moreover,a(t; R},0) & Qf for all ¢ = 0). Thus the pro-
blem of establishing conditions for unidirectional ener-
gy transfer for given w;, u;, j = 0,1, 2 is that of finding
the largest invariant sets Q} and Q7. The exact deter-
mination of these sets is not straightforward. However,
we observe that if 7,(,) > 0 and dn,(a(¢;a,,0))/dt = 0
for all ¢ = 0,then n,.za(t;a ,0)) = Oforallf = 0 or a,eR}.
On the other hand, if n,(ay) < 0 and dy;(a(t;a,, 0))/dt < 0
for all ¢ > 0 implies that n,(a(¢;a,,0)) < Ofor all ¢ = 0
or a,eR;.

Now, using (1), we have

dn;alt;ay,0) _ Re [n*(daﬁ(t)

da,(t)
— o310, 0) +ajO—

dt

az(t)

Copyright © 1973 by the American Institute of Physics 911
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da (¢t
+a}t)a, ) d:( )>]

= Refufluola; @) 2la, )12 + pylay ()] 2la, ()] 2
+ F’-zlao(t)l zlal(t)| 2
+j(w1 tw, — w’S)aS(t)al(l)az(t)]}- 6)

If we assume that the complex frequencies w; satisfy
the matching condition

w’a = w1 + wz, (7)
then (6) simplifies to

dni(a(t;ao; 0))

2 ReluTug)lay 0] 2la, ()12

+ Re(“’:“’l)[ao(t)‘ 2 |a2(t)‘ 2
+ Re(ufu,)laq ) 2la, ()2, (8)

If we assume further that 71,-(30) > 0 and

Re(li}kli,-) 20, j=0,12, (9)
then dn,(a(t;a 5, 0))/dt > 0 and n,@a(t;a,,0)) = 0 for all

t > 0. Consequently,a(t;a,, 0)€Q} for all £ = 0. Note
that one of the inequalities in (9) is Re(ufy;) > 0, which
is automatically satisfied. The remaining inequalities
have the form

Re(u,)Re(y;) > — Im (1) (). (10)
On the other hand, if 7,{a,) < 0 and

Re(/i:"l-"o) <0, j=0,1,2, (11)
then dn;(a(t;ay, 0))/dt < 0 and a(t;a,, 0) € Q] for all

{ 2 0. However, since one of the inequalities in (11) is
Re(ufp,;) < 0,it can be satisfied if and only if p; = 0 + ;0.
The foregoing result can be summarized as follows:

Theorem 1: Assume that for some i,7 =0,1,2, Q}
contains at least one point aj other than the zero vector
in C; and the frequency matching condition (7) is satis-
fied. Then there exists at least one nontrivial solution
a(t;ay, 0) of (1), defined for all ¢ > 0,along which the
energy transfer to the ith wave is unidirectional for all
¢t = 0 provided that ,(a,) = 0 and (9) is satisfied.

Note that the zero vector in C ; belongs to both Qf and
7, since it is an equilibrium point of (1). Also the con-
dition in Theorem 1 regarding Q} implicitly assumes
the existence of a nontrivial solution a(t;ao, 0) defined
for all { = 0. The statement of Theorem 1 can be modi-
fied in a trivial way when the interval of definition of
the solution is 0 < ¢ < T < o, Since the right-hand sides
of (1) have continuous partial derivatives with respect
to all a; at every point in C, it is well known!1 that a
unique solution a(f;a,, 0) defined on some finite time
interval 0 < t < T for any a, € Cj with lag,| <« for

i =0,1,2 always exists. Finally,we observe that the
special resonant case where all the w; are real is in-
cluded in condition (7).

I1i. BOUNDS FOR WAVE AMPLITUDES

In this sections, upper and lower bounds for the wave
amplitudes will be derived. The results may be used to
estimate the growth and decay rates of the energy of
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any wave. In what follows, we shall first establish a
simple mathematical result which will be used later.

Lemma 1: Let f and g be specified real-valued func-
tions of ¢ defined on the interval 0 < ¢ < ©. Moreover,
they are integrable on every subinterval 0 < ¢t < 7 < o,
Let z be a differentiable real-valued function of ¢ defined
on 0 < ¢ < o satisfying the double differential inequali-
ties

Bz(t) + g(t) < d—Z?(‘-) <o0z() +f(t) forallt>0 (12)

and z(0) = z,, where @, p,and Z, are given real numbers.
Then, z (£) satisfies

z4 exp(pt) + f; exp[B ¢t — 7)) g(r)dT < 2(t) < 2 exp (af)

¢
+ Jf, explat — DIf(Ndr (13)
forallf = 0.
Proof: Consider the upper bound for dz(t)/dt in (12).
Let
dz(t)

b@) = az(t) —ft) < 0. (14)

By treating p as a given function of £, the solution to (14)
with z(0) = z, is

2(t) = explatleg + ] explalt — D)]f(ndr
+ [ explatt — Dlp(a)ir  (15)

defined for all ¢ > 0. The upper bound in (13) follows
directly from the fact that the second integral in (15) is
nonpositive. The lower bound in (13) can be established
in a similar manner. This completes the proof.

Now, we shall establish a lower bound for 7;(a(¢; a4, 0))
which will be used to derive a lower bound for |a,(f)] 2.

Lemma 2: Let (w; + w, — wp) be a pure imaginary
number. K condition ](9) is satisfied, then

n,(a(t;a0,0)) = n,(a,) exp[Im(wgy — w, — wy)t]  (16)
for all¢t = 0.

Proof: Since (w; + w, — wB) is pure imaginary, (6)
can be rewritten as
dn,(a(t;a,, 0)

— =Im(w} — w, — w,)n,(alt;a4,0))

+ Re(ufug)la, ()] 2la, ()] 2
+ Re(ufuy)laglt) 2la, ()l 2
+ Re(ufu)lag®)l 2la, ()2, (17

Now, if (9) is satisfied, then we have

dni(a(t; Y 0)

~ > Im(w§ — w, — w,)n,(alt;a,,0)), ¢>0.

(18)

Applying the lower bound in Lemma 1 with g{¢) =0 leads
directly to (16). Thus the proof is complete.

Note that the sign of the lower bound in (16) depends on
the sign of n,(a,). In particular,if n;(a,) = 0, then
n,@(¢;a,,0)) = 0 for all £ = 0 or ag € QF. Thus,the
frequency matching condition (7) as required in Theorem
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1 may be replaced by the requirement that
(cu1 +w, — w’S) be a pure imaginary number.

Theorem 2: Let (w, + w, — w}y) be a pure imagin-
ary number and a(t;a,, 0) be a solution of (1) and (2). If
the coupling coefficients y; satisfy (9), then

ta;(t;ag, 0012 = lagy,[2 exp[ —2 Im(w,)t] + 2n,(a,)P;()
for all { = 0, where )
Pt =
{exp[Im(wg — wy — wy)t]
— exp[—2 Im(w; )t ]/ ImQRw; — w; — w, + w§)

if ImQ2w; —w, —w, +wp) #0,

if ImQ2w; — w; — w, + wg) =0.
(20)

¢t exp[—2 Im(w;)]

Proof: From (3) and (16), we have

dla,(t;a,,0)]2
dt

> -2 Im(w;)l a;(t; a4, 0)|2 + 21,(a,) exp[Im(wf — w; — w, )]

1)

for all £ > 0. Applying the lower bound in Lemma 1 with
B =—2 Im(w;) and g(t) = 2n;(a,) exp[Im(wf — w; — w, )]
leads to the estimate

=-2 Im(w,)la,(t;a,,0) 2 + 2n,@(;a,,0))

+ 21,@0)f, expl—2 Im(w,)(t — 7)
—Im(w; + wy, — w§)THT. (22)

The lower bound (19) is obtained by evaluating the in-
tegral in (22) whose value at time ¢ is P;(t). This com-
pletes the proof.

Remavrks:

(R — 1) From (19), it is evident that under the assumpt-

ions of Theorem 2, if the ith wave has linear growth [i.e.
Im(w,;) < 0], then the wave amplitude |a;(t;a,,0) = ~ as
t = © in the nonlinear case also. An upper bound for the
wave amplitude may be readily derived using the results
of Ref. 7.

(R — 2) From (21) and Lemma 1, if n;(a(t;a4,0)) < 0 on
some time interval 0 < ¢, < ¢ < ¢, then the amplitude of
the ith wave with nonlinear interactions can be estimated
by that in absence of interactions,i.e.,

-

la; )] < la,(to)| exp[—2 Im(w; )¢ —t,)] (23)
for all £ in the interval ¢, < ¢ <¢,. Similarly, if
n;@(t;a4,0)) > 0 on some time interval 0 <t < ¢ < ¢y,
then

la; ()l = la,(t) exp[—2 Im(w,)( — ¢5)] (24)
for all ¢ in the interval {; < ¢ < {;. Note that if
n;a(t;a,,0)) < 0 for all £ > 0 and Im(w;) > 0,then |a,()!
is bounded for all £ > 0 and |a;(f)] > 0ast > ®as
expected.

(R —3) In (19), if n,{ay) < 0,there may exist a finite time
¢; > 0 such that the right-hand side of (19) is equal to
zero at £; and becomes negative for all £ > ¢;. In fact, if
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Im(2w; — w, — wy + w§) > 0 and Jagy, = 0,such a ¢,
always exists and is given by

t; = ImQw; — w; —w, +wp)I?

x In{l1 + lag;121n;@0)1"2 Im(2w — w; — w, + w})/2}.
(25)
I Im(2w; — w; — w, + wy) < 0and |ay;| #0,a positive
¢, given by (25) exists provided that

lag;121n,@0) M ImQ2w, — w; — w, +wh)l < 2. (26)

In both cases, the right-hand side (19) may be replaced
by zero for all > ¢,.

IV. RELATION FOR WAVE-ENERGY TRANSFER
RATES

Now, a relation for the 1, or the rates of wave-energy
transfer will be derived. Consider the pair of equations
in (3) given explicitly by

d t)2

—‘@ill— +2 Im(wy)lay(t)]2 wh o k| |adaia,

dla, )2 -

-la-l—(L + 2 Im(w,)la, ()]2 u | |agaiael
(27

Assuming that Im(udu,) # 0, we can solve for o) :
0k o 3y Ay

dla,)?2
ala.a =[u< 9
%1%, W\

dla,|2
—#0<—d}1—- + 2 Im(w;)la; ! 2>:| /2% Im(ugp,).  (28)

+2 Im(wo)laolz>

Substituting the above expression into the equation in (3)
with ¢ = 2 leads to

dla,|?
—2_ +2Im(w,)la,l? = wlakaa,+ pyaatal

_ 1 * dlaolz
‘Im(p"(‘,ul)[lm(#luz)( dt

+ 2 Im(w0)|a0|2>

+ Im(u )(’”“"2
Mikoke\ ™7,

+2m(wy)la,y 12)]. (29)

It is apparent from (3) that an alternate form for (29) is

Im(uguy )0, @) = Im(u, w3no@(t)) + Im(uguy)n, (@),

(30)
which gives the relationship between the wave energy
transfer rates. Now, suppose that Im(u, u3) # 0 and the
zeroth wave has unidirectional energy transfer, in par-
ticular,ny(at)) = 0 for all £ = 0. Then,from (30), we
have

0< no(a(t)) = [Im(u}’)ul)nz(a(t))
— Im(ugu,)n, (@@))])/Im(u, u3)  (31)

or
(tm (i, )/ Im(uy 13) 0, @())

> [Im(ugu,)/ Im(uy p3) i (a®))  (32)
for all ¢ > 0. Similar inequalities for the wave-energy

transfer rates can be established for the case where
nolaft)) < 0 for all ¢ > 0 and for other waves.
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V. UNIDIRECTIONAL ENERGY TRANSFER IN A
MAGNETIZED PLASMA

We shall now apply the results developed in Sec.III to
the nonlinear interaction between two transverse waves
(with propagation constants %y, k, and frequencies wyw,)
and a longitudinal electron plasma wave (with propaga-
tion constant #, and frequency w2) in a homogeneous
unbounded electron plasma with a constant magnetic
field B,. It is assumed that all the waves propagate along
the magnetic field lines so that only the variations in the
direction of B, need to be considered. For this case, it
has been shown by Sjdlund and Stenflo® that under the
matching conditions
k, =ky—Fky, and w, =wy—w, (33)
the nonlinear interaction between three waves is des-
cribable by a set of differential equations in the form of
(1) with the coupling coefficients given by

JRauPwiw, [ky + w (Spkg/wg — Siky/w))]

= (1 +8,S)

914

By = (1 + 545y JRau2wiw, [ky + wo(S1ky /wy — Soko/wo)]

BNow3  [(wo — Sow,)2 + Spw,w3/2wy]
(35)
Niw2w3u
“2 = 2.,4 5 £ g 12 2 » (36)
2kjuto;{(wy —S;0,)2 + S0, w2/2w,]
where

{ 1 if the (w]-,kj) wave is right-hand polarized,
S, = )
j

—1 if the (w;,k;) wave is left-hand polarized.

The parameters w, and w, are the electron plasma and
cyclotron frequencies respectively. N, is the electron
density. The frequency of the longitudinal wave w, is
given by the following relation:

w§ = w3 + kju2, (37)

where « is the thermal velocity of the electrons.

First, we shall investigate the conditions as established
in Theorem 1 for the unidirectional energy transfer into
the transverse (wy, () wave. It is assumed that the

8Now3  [(wy —S;0.)2 + S;w,w3/2w;]’  polarizations of the two transverse waves are identical
(34 (i.e.,Sy =S, and S;S; = 1) so that the coupling co-
) efficients u; do not vanish. Now, consider condition (9)
in Theorem 1. By elementary calculations, we have
Re(u*y,) = —k3ptwiwow, (k3 — wilko/wo — k1 /w1)?] (38)
0 24N3w} [(wy — Sow,)? + Sow,w3/2w, |[(wg — Spw,)2 + Spw,w2/2wy]
Re (s, _—wiwo (k3 — w2(ky/wo —ky/w,)?] (39)
otz 25w, [(wy—Sqw)2 + Sqw, w2/2w, 2[(wy—Sqw,)2 + Sow,w2/2w]

It is apparent that if both the transverse waves are
right-hand polarized (i.e.,Sy = §; =1),then

sgn[Re(ugu,)] = sgn[Re(ugu,)]

= sgn[w2(ky/we —ky/w)% — k3] (40)
Thus, condition (9), in view of (33), implies
welkg/wog —ky/wyl= ko —kyl. 41)

On the other hand, if both transverse waves are left-hand
polarized (S, = S; = —1),then condition (9) is satisfied
if and only if

sgn[w2(ky/wy — &y /w)? k3]

=sgnf(wy + w,)? —w, w3/ 2w,] (42)
and
(wy; +w,)2> wcw%/Zwl,
or
wlkg/wg —ky/w,l = kg —Ryl. (43)

The latter condition corresponds to the case where
Re(ufu,) = Re(u§u,) = 0. From (33), the frequency
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matching condition (7) is satisfied. Thus, for right-hand
polarized (wy, %) and (w,,k,) waves, we conclude from
Theorem 1 that unidirectional energy transfer into the
(wg, k) wave is possible if

Re{ua}(0)a, (0)a,(0)] = 0
and

welky/wo —ky/wi |21k —Ek,l. (44)

The corresponding condition for left-hand polarized
(wg, ko) and (wy,k,) waves is that Re[uy (0)a; (0)a,(0)]
>0 and (42) or (4 ]) are satisfied. Finally, since the

w; are real, the bound for the amplitude of the (wg, %)
wave as given by (19) reduces trivially to |a,(¢;ag, 0‘3| 2
21ay(0)]2 + 2n,4(a )t for all £ > 0.

In a similar manner, conditions for the unidirectional
energy transfer into the (w,,%,) or (w,,k,) wave can
be established. In fact,if S, = S; = 1, then under (41),
condition (9) is satisfied for both i = 1 and 2. For

Sy =8, = —1, condition (9) is satisfied for both { =1
and 2 if (42) holds.

VI. CONCLUDING REMARKS

Although the results of this paper are limited to three-
wave interactions, one may consider the unidirectional
energy transfer in multiwave interactions. However,
general necessary and sufficient conditions for uni-~
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directional wave-energy transfer are not readily obtain-
able. Physically speaking, the existence of conditions

for unidirectional energy transfer implies the continuous
energy extraction from one wave or energy pumping into
one wave is possible. Further applications of the results
obtained here to other types of plasmas will be discussed
elsewhere.
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A discrete version of the inverse scattering problem of the Schridinger equation with a potential is
discussed. The approach is via the Marchenko equation. Interest is primarily pedagogical. All steps
are elementary and relatively obvious. Passage to the continuous case as a limit is heuristically
straightforward. An example shows “how” the formalism does produce the potential from scattering

data.

1. INTRODUCTION

In a previous paperl with a similar title we considered

a discrete version of the inverse scattering problem of
the Schridinger equation with a potential. The essential
point was one of pedagogy. In the discrete version the
motivation for various steps becomes obvious. At any
peoint an appropriate limiting process leads to the classi-
cal results.

The construction of the potential from the scattering
data proceeded in two steps. First, following Jost and
Kohn? the scattering data is used to construct the spec-
tral function, Then, following Gel'fand and Levitan,3 the
potential is constructed from the spectral function. The
second of the steps is completely elementary in the dis-
crete problem, However, the first step still demanded a
Wiener-Hopf type factorization—and could still not be
considered elementary.

An alternate solution of the classical inverse scattering
problem is associated with among others, the names of
Agranovich, Krein, and Marchenko,4 Here we consider
this attack on the discrete version of the inverse scatter-
ing problem. It will be seen that all steps are now ele-
mentary, obvious, and almost trivial. Passage to the con-
tinuous limit can-be made at any point, Furthermore,
certain relations and the origin of particular terms
become very clear.

Our program is as follows: In Sec. II the discrete ver-
sion of the Schrédinger potential problem is formulated.
Relevant properties of such equations are briefly re-
capitulated. The main portion of the work is Sec. III
where the formal solution of the inverse scattering
problem is given., An example is worked out in Sec. IV
and the continuous limit is obtained in Sec. V.

Il. BASIC EQUATIONS AND PROPERTIES

Consider the eigenvalue problem associated with the
equation

v n+ D)+ Y, n— D] =xm)YA,n), =n=1. (1)

We ask for those A for which bounded solutions to Eq. (1)
exist subject to the boundary conditions

Y, 0 =0, Y, 1)=const=0. (2)
If we write
A=1—EA2, g(n) =eama® (3)

and pass to the limit A = 0, n 2 ©, nA = x (fixed) this
is the Schrodinger equation

1 d2y(E,x)

E dx? —q(x)zp(E,x)=~E‘P(E,x); (4)

with potential g(x). Choosing the const in Eq. (2) as A the
boundary conditions become
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=1, (5)

WE 0)=0 _._‘I‘
( ’ ) ’ dx ‘x=0

Now if ¢ (x) is suitably well behaved the spectrum corres-
ponding to Eq. (4) consists of a finite number of discrete,
simple eigenvalues on the negative real E axis and a
continuum 0 < E < ©, For large x the continuum eigen-
functions are ~ sin[V2Ex + §(E)]. The classical problem
is to determine g (x) given the scattering date, i.e., the
phase shift 6(E) for 0 < E < », the positions of the bound
states (— ¢;) and the bound state normalization constants
C; (which are the integrals of the squares of the bound
state wave functions), Here we treat the analogous prob-
lem for the discrete version.

Let us suppose that g(z) in Eq. (1) is always finite, posi-
tive and such that lim,_, g(n) = 1. [A strong require-
ment would be that g(#) = 1, n > N for some N. It is
convenient to keep this case in mind. However, a weaker
sufficient condition is that 272, |g(n) — 1|z < ®. Unless
otherwise stated, our conclusions will be true for this
weaker condition]. Then the spectrum of our discrete
eigenvalue problem consists of:

(i) A finite number of simple real eigenvalues occurr-
ing in equal and opposite pairs such that | J o1

(ii) A continuum corresponding to — 1< A < 1, For
large n these continuum functions are ~ sin{n6 + &),
where cosd = A. The question is to determine g(n) given
8(r), the X, and the constants C, = 232, ¥2(x;, n)g(n).

Greater symmetry in the final formulas results if we
make the transformation

¢, 7) =Ygy, n). (6)
Then Eq. (1) becomes:

an+ )¢, n+ 1) + am)o(,n— 1) = rp (A, n),
n=1 (7)
where

a(n) = 1/2Vg(n)g(n — 1). ®)

[Notice: In our problem g(0) does not really occur. It

multiplies ¢(A, 0) = 0, and hence is arbitrary. For con-
venience we take it as 1/¥g(1).] Our problem is now to

find the a(n).

The various quantities involved are conveniently ex-
pressed in terms of the analog of the Jost function.
Thus,letz =X — (A2 — 1)1/2 [and then 21 = A +

(A2 — 1)12],

Then Eq. (7) becomes
a(n+ oA, n+ 1) + an)p(r,n— 1)

= +2z°1)/2]p(,n), =n=z=1. (9)
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Two linearly independent solutions of Eq. (9) are defined
by the boundary conditions

Y}Lm|¢*(z,n)— z:n| =0, (10)

Choosing the initial constant so that ¢(2,1) = 1, it is
readily shown that

[¢_(Z, 0)¢+(Z, n) - ¢+(Z, 0)¢._(Z, n)]

z—2z1

¢(A’ n) =
for |z| =1, (1)

The phase shift is given by 2% = S(z) = ¥_(z, 0)/¢¥,(z, 0).
Note some analytic properties:

(i) ¢(r,n) is analytic for z within the unit circle except
for a pole of order » — 1 atz = 0, [Indeed ¢(A, n) is a
polynomial of order n — 1 in A = (z + 1/2)/2].

(ii) ¢,(z,0) is analytic for z within the unit circle, If
g(n) = 1, n> N this is obvious since it is then a poly-
nomial in z. However, it is also true under the weaker
condition mentioned above

(iii) ¢_(z,0) is analytic for z outside the unit circle. It
can be analytically continued within the unit circle at
least if g(n) — 1 vanishes faster than any exponential.5

The bound states are given by the zeros of ¢, within the
unit circle, i.e.,

¢.(z;, 0) = 0. (12)

(These zeros are real, simple, and occur in equal and
opposite pairs). The bound state wave functions are
given by

¢‘(}‘i’ n) = ¢*(Zi, n)/¢+(zi; 1)- (13)

When ¢_ can be continued within the unit circle this can
also be written as

¢ (zp 0)¢+(Z‘., n)

14)
z, —z;! (

¢(Ai’ n) -

Hi. THE MARCHENKO EQUATION AND SOLUTION
OF THE PROBLEM

Consider functions ¢9(z, #) defined as above but satis-
fying

%%, n+ 1) + ¢2@z,n— 1)] =r¢%(,n), n=1. (15)
Clearly,
¢z, n) = z7, (16)

The Marchenko equation is obtained by noting that there
exist constants K(n,m) (independent of z) such that

D) = 35 Klmn)92(e,n). )

It is simplest to see this by considering the case when
g(n) =1, n > N. Then the statement is trivial for suf-
ficiently large n. Assuming this true from some n» we
see from Eq. (7) written in the form

a(m)p,(z,n — 1) = %3—)@:@, %) — afe + 1) fz,n + 1),
(18)
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and using Eq, (15), that it is true for » — 1. Indeed, we
read off that

1 K(n, n)

2 Kn—1,n— 1) 19)

aln) =

[That this still holds for the weak convergence of g(n) to
1 requires but a little analysis].

Let us rewrite Eq. (11) in the form

& — 21)$(x, n) 6., 0)
P A el
= 6.0z, 1) — (2, 1) — [1 — )]0, (2, ).

(20)
Inserting the expansion of Eq. (17) gives

o M) 5 Kl w996, ) - 400e, )

— 3 Kl n)¢0(, )1 - S@)). (1)

n'=n

Suppose now Eq. (21) is multiplied by 2™~1/27i for m =
7 = 1 and integrated around the unit circle.

Then

o =g

o0
= 3 Km ) (5L $2m-r696, miae
n'=n 27
1
— L femip0@,w dz)
zwﬁ ¢0(z, n'|
oo
+ 2 Km,n')F,(n',m), m=n=1, (22)
n'=n

where

Fo,m) = 1 §2m1906, n)1 - SE)ldz.  (@23)

Now
L fzm—lqb?(z’ n')dz = _1__ fzm*-n’—ldz =0
27i 2mi ’
m=n =1 (24a)
and
1 _ 1 e
——_fz'" 199z, n')dz’ = —-7fzm »"~ldz = 6(m,n’).
2mi 2mi (24b)

To evaluate I(m, ) we note that the singularities within
the unit circle are poles at

(i) Zeros of ¢*(z, 0)-bound states
and
(ii) A pole at zero.

From the bound states we obtain

Lom, ) = D(eym-1 L1 F 18 n)

: (25)
i ¢.(z; 1)¢.(2,, 0)

with
¢;+(zi7 0) = i ¢+(Z, 0) | 2;*
dz i
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On using the expansion Eq. (17), this becomes

,— 21
52 5 K, w)40(e,, m)am.

Ib(m, n) i 2 ¢+(Zu 1)¢+(zu 0) n'=n

(26)
The contribution of the pole at z = 0 is found by noting
that using the basic recursion relation Eq. (18) we can

readily obtain the behavior of ¢(r, z) and ¢,(z, 0) for
sufficiently small z.

Thus, for small z, we have

o\, n) = nz .
i7=r12a(z)
and
¢, (z,m) = )
tﬂm 2a(z)
Hence
LB g1 T 2a00), (28)
¢+(z, 0) i=n+l
However, from Eq. (19) we see that
P g Kt Lnt 1) Kt 2,n+2)
i=n+l K(n,n) Kn+ 1,n+ 1)
K(n,n)

If the expression of Eq. (29) is inserted in Eq. (22) we
see, since m = », that there is at most a simple pole at
the origin and this only occurs when » = m. Hence, the
contribution to /(m, n) is

- = K(®, ®)8(n,m)

I%(m, n) X, ) (30)
Inserting Eqgs. (24a, b), (26), and (30) into Eq. (22) then
yields
lﬁ}{gﬁﬁ%ﬂ) =K(n,m) + ;‘?‘,K(n, n'YF(n'm),

ke m=nz=1 (31)
with

’ — L — 1] Nom-1
F(n',m) = rw $[1 — S(2)]¢0(z, w)e ™ 1dz

(Z,' - 2;1)¢9 (zp n’)zim
* z,) 2, + (2, 1)$,(2,0) 82)

But since ¢9(z, #') = z*’, we have
Fn',m)=F(@n' +m)
with

(33)

Fon) = -2117 $[1 — S@)]em™1dz + T M2z, 34)
1 i

where, as shown in the Appendlx the M2 is the bound
state normalization constant, i.e., M; 2 = 33, 02(z,, ).

First consider Eq. (31) for m > n, then if k(n,m) =
K(n,m)/K(n,n) this becomes
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o0
0=«{n,m) + Fm+m)+ 2, k(n,n)F@n' +m),
n'=n+l
m>n>1,6 (35)
an inhomogeneous equation for k(n,m).
Then, if we put m = n, we obtain
K(@®,©) _ 4, F(2n) + Z} k(n,n')F(n' + n). (36)
K(n n)2 n'=n+l

This then determines K(n, )7 after having found « (», m)
by solving Eq. (35). From this a(x) follows from Eq. (19).

As in our previous paper,l all that is then determined is
vg(n)g(n — 1), n=2. (In essence this gives just the
average of the potential at two consecutive points—a dis-
tinction of no importance in the continuous limit.) How-
ever, as there, there is a unique determination of g (») by
the requirement that limg(n) = 1 as » = ©, Thus, con-
sider the now “known” quantities

m =[]
X = [520] &)
We have
for n even
x(2)x(4)+ * « x(n)
1) — =
£ M = &) x®xn— 1)
and for » odd
g) _ x(2)x(4): - -x(e — 1)
gn)  x(3): x(5): - -x(n)
In either case, since g(n)— 1, x(n) = 1, we obtain
x(2)x(4)- -~
1) = A 38
£0 = e 9

Then from a(n) and g(1) we have all g(n).

1IV. AN EXAMPLE

It is instructive to consider in detail the situation when
g(n) =1, n> N. Then ¢, (2, 0) are polynomials in z(z"1)
of order N. The mtegral in F(m) may be done by con-

tours. There are contributions from poles at the bound
states and at the origin. The bound state contribution is

1 ¢_{z,0)zm-1

S i

2mi ¢.(z,0)

¢_(z;, 0)2 "1
¢+(zi7 0)
—_ (zi — zi—l)zim—l

=— 39)
PP AR
since in this case

z-l
(Z,, 1’

$-(2;,0) = (40)

This just cancels the explicit bound state term in Eq. (34),

F(m)——— §'[1 — S(z)e™-1dz, (41)

where f ' means to omit contributions from bound state
poles.

Furthermore,
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1 ﬁl ¢+(Z, 0) - ¢_(z, O)Zm'ldz

O = om 0.2, 0)
- m-14
=__1_T ﬁ,PN(z) Py(1/z)z z’ (42)
2w Py (=)

where P, is a polynomial of order N. The integrand we
see has a pole or order at most 2N — m at the origin.
Hence, if m > 2N, we conclude that

Fm) = 0. (43)

For n= N, m > n we have from Eq. (35) that

K(n,m) = 0, (44)

From Eq. (36), we then have

K( oo)= 1

Kn, )2 n=N+1,

(45)

»

Thus

K(co, W) =1
and

K(n,n) =1,

n= N+ 1, (46)

But then

a(n) =_1____I_{_(§.L1‘)__._—l,

= n=N+2,
2Kr—1,n—1) 2

(47

As a specific example, we consider

1—(1— gz + 1/2)z¥[(zg¥ — 27N)/(z — z°1)]

S¢) = 1— (1 —g)z + 1/2)z2¥[(zN — 2N) /(2 —z-1)]

From the general argument above, we conclude that “
F@m) =0, m > 2N:

s K(o,0) =1=K(nn, n>N (49)
By direct calculation,

F@2N)=(1-g)/g
Then, from Eq. (35), we see

K(N,m)=0, m > N,

Furthermore, Eq. (36) is then

1/K(N,N)2 =1+ F(2N) = 1/g,  K(N,N) = Vg,

and
LEWN+1,N+1) _ 1
2 K(N,N) 2Vg

Continuing further, we find that for n > 1

a(N+ 1) = (50)

- — o1
FN— 2nm) = 20 =82 — ]t
gn+1
Then, for N— 1, we have

(51)

1/K2(N—1,N—1)=1+ F(2N— 2)
+ K(N— 1, N+ 1)F(2N). (52)
But Eq. (35) gives
K(N—1,N+ 1) = — F(2N). (53)
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Thus, Eq. (52) becomes

1/K2(N—1,N—1) =1+ F(2N—2) — F(2N)2. (54)
Inserting the values of F, then yields

K(IN—1,N—-1) =g,

while
1 K(N, N) 1V 1
alNY =2~ 25 Y 21 -~ 55
M = kw—1N-1) 2% 2z (55)
Similarly, we find
K(N—-n, N—n)=g, n=2,
sa(N—2) _1EKN—-1,N=-1) _1g 1/2
2K(N—2,N—2) 2 g
and
aN—n) =1, n=2, (56)
To compute the g(n) explicitly we note that the x(»)
given by Eq. (37) is
x(n) =1, n=N,N+1
=g n#NN+1, (57)
Then
x(2)x(4)- -
gl)y="—"——— = (58)
x@x(5)- -+
Thus,
gm=1 n=12.N-1
=g n=N
=1, =n>N\,
i.e.,
&(n) = gé(n, N) (59)

V. THE CONTINUUM LIMIT

Let us see how the classical results are obtained in the
limit A = 0. We have

F(@m) = F,(m) + F,(m), (60)
where
F0m) = —1- §[1 — S@)}em-1de (61)
2mi
and
Fym) = 2 M2z/» (62)
i
In Eq. (61) we substitute z = ¢i® and obtain
_1 74 GlLime
F,(m) = - f_1r [1 — Sleimo de. (63)
Now
cosf =xr =1— EAZ,
Solving for A — 0 gives
=t+kA, k=vV2E, (64)
Then
1 e imak
Fom) = — A [ _[1—Sleimerde, (65)

which in the limitm — ©, A 2 0, mA = x gives
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F () = AF(x),
Similarly,
Fb(m) - AF)(x),

where Fy(x) = - [ “[1— sle#d.
—/

(66)

where F}(x) = 2;M]2¢ *ix, (67)
i

M2 =1/ fo°° ¢2(— €, x)dx, (68)
and

ICZ = V2€i .
Then

F(m) = AF'(m).
Now Eq. (35) becomes

0=K(m,m)+ AF'(n + m) + Z} K(n 7' )AF' (n + m),

menl m>n (69)

Clearly, K(n,m) = AK’'(n,m), where

0=K'(n,m) + F'(n+m)+ E K’(n #)F'(n + m)Aa. (70)
In the limit then mem

0=K'(x,9) + F'(x,5) + fwa’(x,z)F’(t,y)dt,
The Eq. (36) is then

K(, ©)
K(n, n)?

Since F'(2n) = 0, we first see that K(wo, ©) = 1, while
substituting from Eq. (71)

1/K2(n,n) = 1 — AK'(n, n)

y=x,
(71)

[-¢)
=1+ A F'20)+ 2 K (n,n)F'(n,m)a . (12)
n'=1

or
K(n,n) = 1+ 2K (n,n). (13)
Then using
1 _1 K(n,n)
a(n) = 74
2\/g(n)g(n- 1) T2 Kn—1,n—1) (t4)
Ing(n) = InK(n — 1,n — 1) — InK(n, n).
Butg(n) = 1 + g(x)A2
o g)az = —g—[K’(n —1,n— 1) — K'(n,n)],
which in the limit gives
1 d
x) = —— —K'(x,x). 75
q{x) 5 (x, %) (75)

Furthermore, since K(n, n) — 1, k(n,m) = AK’(n,m) for
m > n we see our basic integral representation becomes

V,(E,x) = YOE,x) + [ K (x,yWO(E,y)dy, (76)
where
YO(E, x) = e#2Ex,

It is interesting that the explicit extraction of the term

YO(E, x)(i.e., a delta function in the general integral re-
presentation) is so obvious in passing from the discrete
to the continuous case,

VI. CONCLUSION

A discretized version of the inverse scattering problem
has been discussed. In particular, an analog of the
Marchenko approach to the continuous problem is
followed. All steps in the solution appear to be elemen-
tary and relatively obvious. The continuous limit is
extraordinarily clear. While no claim is made to have
made the continuous limit rigorous, it is hoped that the
basic structure of the solution has been illuminated.
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APPENDIX
The bound state normalization constants

In the text we have stated that the coefficients of the
bound state terms are related to the normalization con-
stants, i.e.,

Z; z“l o
e o]

To prove this let us write out the equations for ¢, (z,n)
and a ¢,(z’,n) where z’ is near z, i.e.,

aln+ )¢, (z,n+ 1) + am) ¢, (2, n— 1) = N,¢,(2;, n)
and

aln+ 1)¢,(2',n+ 1) + a(n)9,(2',n— 1) = M ¢,(2’, n). (A3)
[Here A, = 3(z; + z;1) and A" = z(z’ + 2'~1).] If we multi-

ply Eq. (AZ) by @, (z n), Eq. (A3) by ¢,(2;, n), subtract and
sum over zn from 1 to a, we obtain

N
Oy = X) 21 ¢.(an M9, )
= a(N+1)[9.(z;, N +1)0.(2', N) — ¢,(&', N + 1), (2, N)]
— a)[9,(p V.’ 0) — ¢.(", 1V$.(2, 0)].  (A9)

This can be considerably simplified. Thus, since the ¢,
vanish as N = <, we can pass to this 11m1t Also,
¢.(z;,0) = 0 and a(l)

(A1)

(A2)

&, 1 ¢,(2', 0)
Sz, e, (2, n) = -0, (2, 1) ———o .
L 0.(a o' m) = S 0(ep 1) (A5)
On passing to the limit 2’ — z,, we then obtain
® 1 do,(z',0)
2 ¢z, )2 = —¢.(2, 1)¢—(——— . (A6)
n=1 2 ax’ 2=y
But,
4 _dz 4
dx' di' dz’
and
a1 1
=__1_1 12 = =—Jz! — I-]_.
=l /2] = e — 21 an
Hence
, Lz, 1), (2, 0
Ei¢+(zi, n)z 1¢ ( 1 )¢ ( i ) (A8)
n=1 —Z; 1
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This work is the first of a series of three papers examining different aspects of position operators in
relativistic quantum theory. In this paper the properties of the position operator X and the velocity
operator V are derived for single particle matrix elements in the context of the Poincaré generator
algebra. Both the physical meaning and the mathematical implications of each property are
discussed. The algebraic structure of the extended set of relationships including the Poincaré
generators, X and V is examined. It is found that this set defines an infinite algebra which is
intractable mathematically. The Casimir operators of the Poincaré algebra are required to be Casimir
operators for X and V, a new condition on V is formulated, and a simple solution for K is
constructed. These conditions, together with familiar position operator properties, give the

constraints and solutions for the extended algebra.

1. INTRODUCTION

The “correct” formulation of a position operator for
relativistic quantum theory is a problem with a long
history. Many of the problems of generalizing the clas-
sical notion of position to an acceptable relativistic
quantum theoretical notion were defined in early works
by Dirac,! Papapetrou,? Pryce,3 Mgller,4 Newton and
Wigner,5 and Foldy and Wouthuysen.® There is a great
deal of choice in what is meant by “position” as well
as in the properties the position operator should have.
For example, the “position” of a particle could be de-
fined as its center of mass, center of energy, center of
spin, center of charge, center of number density, that
operator whose eigenstates are “most localized”, that
operator X whose eigenvalue is the coordinate x, or
that operator whose trajectory moves with the classical
velocity of the particle. All of these possibilities and
more have been studied, many of them in Ref.1 through
6. It will be shown in a paper to follow this present
work that one position operator satisfying the algebra
of this paper is the center of charge or number density
for a system of free Dirac spin 3 particles,

Having chosen a basic definition for the position opera-
tor, one still has the choice of constructing it as a 3-vec-
tor or 4-vector quantity. Its properties can then be stu-
died, for example whether its time derivative gives a
reasonable definition of a velocity operator. It has been
found that all of the position operators listed above
always lack at least one property considered necessary
or reasonable. The criteria in this present series of
papers for the necessary and reasonable properties are
correct classical limits, correct relativistic behavior,
correct quantum operator formulation, and correct

field operator construction. Examples of these proper-
ties are that the position operator should be a polar vec-
tor, should have the canonical commutation relation with
the momentum operator, should give the physical velo-
city operator, should transform under Lorentz trans-
formations as a correctly defined field operator, and
should have the correct behavior under charge conjuga-
tion and time reversal operations. These properties
and others are the subjects of this paper and two com-
panion papers.

One approach to studying the properties of operators

is the algebraic approach. By this is meant the systema-
tic use of commutation and anticommutation relations
between operators to describe their relationships and
derive new rules. Thus the commutator of the total
angular momentum operator J with any operator tells
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how that operator behaves under spatial rotations, and
the commutator with the momentum P tells how the
operator behaves under a spatial translation. This
approach leads to the construction of a set of relation-
ships which may or may not define a useful algebra.
The set of ten commutation relations between the Poin-
caré generators H, P, J, and K (the Hamiltonian or time
translation operator, momentum or space translation
operator, total angular momentum or spatial rotation
operator, and pure Lorentz boost operator, respectively)
is an example of a very familiar and useful Lie algebra.
This algebra, supplemented by relationships for X and
V, is the specific subject of this paper. The extended
algebra is defined and its properties are studied.

This paper is the first of a series of three on different
aspects of position operators. In the second paper a
field operator will be constructed as a simple example
of a usable position operator for field theory. This
operator will be the Dirac spin-} field operator

X = fd3xtl/"(x)xw(x).

The purpose of constructing the simple field operator is
to determine rigorously which of the algebraic proper-
ties in the present paper hold field theoretically. In
particular, the “Lorentz covariance” property to be
discussed in this paper has been a subject of contro-
versy and has never been proven to hold for general
spin. The field construction enables one to derive rigo-
rously the conditions under which this property holds,
and shows that the covariance property holds only for
coordinate space operator densities and single particle
momentum space matrix elements, but not for the opera-
tors themselves. Because of this, all algebraic relations
in the present paper should be taken as conditions on the
operators which appear in single particle momentum
space matrix elements. The third paper will extend to
general spin the results of the first two papers on alge-
braic and field theoretic properties of the position
operator.

It should be noted that the approaches of this paper and
Paper II, namely the algebraic and field operator ap-
proaches, are different from the very important formu-
lation of position operators worked out by Newton and
Wigner.5 Newton and Wigner made assumptions about
the states of a most localized system and then derived
the position operator whose eigenstates were those
most localized states. Here an operator is postulated
to obey certain algebraic properties, with no emphasis
on states. In Paper II a field operator will be construc-
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ted which can be compared to the Newton-Wigner opera-
tor and whose algebraic properties can be derived. The
three approaches are different but compatible.

The algebraic properties under consideration in this
paper will now be introduced with a brief historical
background before discussing them in detail in Sec. 2.
The properties are all formulated as commutators or
anticommutators, where the commutator of operators
A and B is defined to be

[A,B] = AB — BA

and the anticommutator is defined to be
{A,B} = AB + BA.
The properties are first listed, and then discussed indi-

vidually. Note indices run from 1 to 3 and bold face
indicates 3-vectors.

[i %] = i€ X, 1.1)
[#,X] = — iV, (1.2)
(X;, B] = 15, (1.3)
(X, X1 =0, 1.4)
X, K] = 3{X;, X, H]}, (1.5)
-‘z-{H,V} =P. (1.86)

The first three properties require little justification.
Equation (1.1) states the requirement that a position
operator X be a 3-vector under rotations. While the
parity operator ® was omitted in this collection (as
were the charge conjugation operator € and the time
reversal operator T'), X clearly must be a polar vector,
that is have odd parity. Equation (1. 2) is the definition
of the velocity operator as the time derivative of the
position operator. In quantum theory the time deriva-
tive of any operator A(f) is given by

dA() _ aA(t)
prani i[H,A@B)] +—=

Thus [H,X] gives — ¢V for time-independent X. The
further properties of V need justification, but not this
initial definition. About Eq.(1.3) there can be some
debate, as will be discussed. However, it is generally
accepted that the canonically conjugate coordinates g;
and momenta p; of classical physics, which obey the
Poisson bracket identity

[qﬂp] B _6

should become the canonically conjugate position opera-
tor X and momentum operator P in quantum theory, and
hence obey eq.{1.3). In a 4-vector theory of position
operators extra terms can be added to Eq.(1.3). These
are discussed by Zmuidzinas? and Johnson38, and will

be mentioned in Sec, 2.

Equation (1.4) is a more debatable condition. Classi-
cally, the coordinates of a particle commute with each
other. However, there is no a priori reason to expect
the quantum operator X to commute with itself, provi-
ded the correct classical limit pertains. There are
even classical definitions of positions which lead in the
quantum mechanical case to noncommuting position
operators. For example, the center of relativistic mass
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of a particle which is spinning shifts coordinates depen-
ding on the frame of reference from which it is viewed.
For a spherically symmetric particle with spin S the
position of the center of relativistic mass viewed by an
observer moving with relative velocity V is shifted
from the position viewed by an observer at rest rela-
tive to the particle by a factor proportional to V X 8,

This term V X S does not commute with itself quantum
mechanically. Thus one might expect position operators
for particles with spin to obey Eq. (1. 4) only under very
special construction. The position operator of Newton
and Wigner5 is constructed as the operator whose
eigenstates are “most localized”. This operator Xyy
obeys Eq.(1.4). For this reason Flemmg9 suggested
calling the property “locality”. A “local” position opera-
tor commutes with itself, In this series of papers, how-
ever, the terminology “self-commuting” is used, to avoid
confusion with other meanings of the word “local”. Self-
commutation is taken as a reasonable requirement for
X partly for the purpose of finding out when it fails or
when it can be relaxed without losing other desirable
properties of X.

Equation (1. 5) is usually called the “Lorentz covari-
ance” condition and will be one subject of Paper II

in this series. As can be seen, it involves a more
complicated algebraic relationship than the preceding
equations, and it is consequently harder to prove. Cur~
rie, Jordan, and Sudarshan! 0 attempted to prove Eq.

(1. 5) for general spin position operators, but could not,
as it involves a nonlinear equation in expectation values.
K is the Lorentz boost operator, so [X], Ig] should give
the behavior of X under boosts. Pryce3 derived Eq.

(1. 5) in the form

%, K = X,

by assuming that the position of a particle behaved as

a point, or alternatively as a classical coordinate. When
the right side of this equation is symmetrized for quan-
tum theory, one gets Eq. (1. 5),

[%, K] = +{%, V;}. 1.5)

Many of the possible position operators do not behave
as points. For example the center of relativistic mass
of a spinning particle, which was already used to illus-
trate self-commutativity, is a “dynamic” position opera-
tor. That is, it is defined as an average over a dynami-
cal property. Any position operator which involves a
spatial integral will change as the frame in which the
integral is performed changes. Pryce's3 derivation
breaks down for such ‘‘smeared out’ average positions.
This does not mean that they cannot be covariant, as will
be shown in Paper II. It only means that imposing co-
variance does not lead to Eq.(1.5). Fleming?® suggested
calling this property “pointlike”, as it depends on the
position operator tracing out a worldline rather than a
smeared out worldtube. Because the ‘‘covariance’ pro-
perty and self-commutativity are interrelated they have
often been misinterpreted. The fact that the Newton—
Wigner position operator Xy, obeys Eq.(1.4) and not
Eq. (1. 5) has been accepted as a proof that a ‘‘local’”’ or
self-commuting position operator cannot be Lorentz
covariant. However, a Dirac-like! position operator
does have both properties. The Dirac operator X;, incor-
porates operators referring to both positive and negative
energy, while the Newton—Wigner operator Xy, is res-
tricted to act on only positive energy wave functions.
The explicit relationship between these operators will
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be shown in Paper II, along with their covariance pro-
perties. Again, Eq.(1.5) is assumed in this paper partly
to see what constraints it imposes on solutions for all
the operators.

Equation (1. 6) is a new condition on the velocity opera-
tor V. It has usually been required that V should re-
duce to either the nonrelativistic velocity V = P/M or
the relativistic velocity V = P/E. These conditions
lead to

[H,X]:—i'—P or —iZ.

M E

Some position operators do not satisfy either of these
conditions. For example, the Dirac operator X, does
not have a velocity operator corresponding to the clas-
sical particle velocity. The well-known Zitterbewegung
is added to the classical velocity. Fortunately, the ex-
pectation value of the Dirac velocity V;, is still the
classical velocity, but the operator V = @ (c = 1) is not
a classical velocity operator. Equation (1.6) is a new
statement of the velocity constraint

:{v,H} =P, (1.6)

which reduces to the nonquantum limit

VE=P orV=P/E.

The Dirac velocity satisfies Eq. (1. 6).

Some relations for X can be stated by considering the
effect which a measurement of the position of a particle
should have on the state of the particle. Thus the self-
commutativity of X can be interpreted as saying that
any two components of the position can be simultaneous-
ly measured, and the canonical commutation relation
between X and P leads to the uncertainty statement
about measurements of position and momentum. Two
additional requirements are that a measurement of the
position of a particle should not change its mass or
spin, These are derived in Sec. 2 as

[MZ,X]ZO (1.7)

and

[w2,X] = 0. (1.8)

M2 is the invariant mass operator defined as
M2 =H2 — P?

and W2 is the invariant spin operator defined as

Wyg=JP and W=-—HJ—-PXxK.

M2 and W2 commute with all generators of the Poin-
caré algebra, and are called Casimir operators. The
requirement that they also commute with X and V gives
new constraints on the solutions for the operators as
well as information about the extended operator algebra.

In Sec. 2 these eight conditions are further discussed
and the entire set of commutation and anticommutation
relations which can be derived for X and V, together
with the Poincaré algebra, is collected. Explicit repre-
sentations of J and K are used to derive some of the
conditions. A solution of the algebra is given for spin 3.
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In Sec. 3 this extended algebra is studied to see if it
reveals any new physics. Recently Giirsey and Orfan-
ides!! have studied implications of X within the Poin-
caré algebra alone. It is found in the present paper that
the more extensive algebra yields no new physics in the
sense that the Poincaré algebra yielded new physics.
Four mathematical limitations on studying the extended
algebra are discussed in the context of the definitions
of Lie and Jordan algebras.

In Sec.4 the new results of this paper are summarized
and suggestions for future work on the mathematics and
on the solutions to the algebra of physical use are made.

The Appendix is a tabulation of many of the relations
derived in Sec. 2. In particular, the velocity operator V
and the spin operator 8 are compared in detail for the
purpose of finding an explicit representation for V.

The references in this paper are not intended to be a
complete span of position operator literature. Further
references will of course be cited in the two remaining
papers of this series. Only those papers with special
relevance to algebraic properties were included in this
bibliography.

2. DERIVATIONS OF ALGEBRAIC RELATIONSHIPS
FOR THE POSITION AND VELOCITY OPERATORS

There are two possible approaches to the problem of
finding the algebraic properties of the position operator.
The first approach is to argue the physical meaningful-
ness of a property which can then be written as an alge-
braic relation. When all physically reasonable proper-
ties are collected, the mathematical and physical impli-
cations of the corresponding set of algebraic relations
can be studied. For example, the physical requirement
that a measurement of the position of a particle not
change the mass of the particle can be written alge-
braically as

[M2,X] = 0.

As noted in the introduction, this condition is the mathe-
matical statement that M2 is a Casimir operator for
the extended algebra which includes X as well as the
Poincaré generators. The physical implications of M2
being a Casimir operator for the extended set can then
be studied.

The second approach is to postulate mathematical con-
ditions on the operator X, along with the standard con-
ditions on the Poincaré operators, then to derive further
conditions from the ones which were postulated. The
most elegant form of this approach consists of finding
the fewest and simplest conditions which must be im-
posed on X and the other operators in order to derive
all other conditions. As an example of this, self-com-
mutativity of X [Eq. (1.4)], along with an explicit repre-
sentation of K,

and
K = :{X, H},
are sufficient to derive the condition [Eq. (1. 5)]
[Xi’Ig] = %{X], [XiaH]}’ (1.5)

which is sometimes taken as the Lorentz covariance
requirement, but will be shown in Paper II to be a stron-
ger requirement on X. A problem with this second
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approach is that of choosing which conditions to postu-
late and which to derive. Different small sets of condi~
tions are sufficient to derive all other conditions, and it
is a matter of taste which set is considered to be more
fundamental or more elegant.

The approach taken in this section is to first discuss

the physical meaning of the most important conditions
for X and V, then to switch to the mathematical approach
and choose the set of conditions which most economi-
cally leads to all other conditions on these operators.

In Paper II of this series of three papers, a field opera-
tor X will be defined from which all properties of X can
be derived, so that none needs to be postulated.

Equations (1.1) through (1. 5) are the five standard con-
ditions on X. They give the commutation relations of
X with the Poincaré generators H, P, J, and K, and with
itself. Two features of this set of equations are striking.
First, the Eq. (1. 2)
[H,X] =— 3V (1.2)
defines a new operator V not in the set H, P, J, K, X.
Likewise, the time derivative of V would lead to an
“acceleration” operator A,

[H,V] = — iA,

which would not be in the set H,P,J,K,X,V. Thus in

any physical situation in which there is a velocity or

an acceleration one expects to have an algebra which
does not close. By contrast, the Poincaré generators

all close upon themselves in their commutation relations.
Second, the right hand side of Eq. (1. 5)

[Xi’Kj] = %{Xj’[Xi:H]} (1.5)
involves an anticommutator and is not linear in the
operators, two properties which are also not characteris-
tic of the Poincaré algebra. The whole set of X and V
relationships consequently is not expected to be an easy
algebra to analyze; its mathematical limitations are dis-
cussed in Sec.3. Nonetheless, it is physically impera-
tive that the velocity operator exist if the position
operator exists, so relationships must be found for both.

There is no need to further justify Egs.(1.1) and (1. 2).
Classically Xmust be a polar 3-vector and V must be
the time derivative of X. In quantum language these
become

i X] = i€ X (1.1)
[H,X] =— iV, (1.2)
as discussed in Sec.1.
Equation (1. 3),
[Xi,Pj] = i0;;, (1.3)

has justification in the classical canonical commutation
relation between [ and p; and in the uncertainty prin-
ciple for measuring posmon and momentum simul-
taneously. However, it is not ruled out that such a term
as iP,P;/E? could be added to the right side of Eq. (1.3).
In fact (see Refs. 7 and 8), if the position operator is
postulated to be a 4-vector instead of a 3-vector opera-
tor (a possibility which is rejected here), then Eq. (1. 3)
becomes

%, 5]

=—ig,,
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where g,, = 0 for u = v and g5y = — g;; = 1. For the 3-
vectors X and P this reduces to Eq.(1.3). But for u =

i=1,2,3 and v = 0 this becomes
[Xi’H] =

where P, i8 the operator H. This result has the physi-
cal interpretation that the velocity is zero, which is not
an interesting theory. Thus the term iP, P, /E2 might be
added to the right side of the 4-vector equatlon to give
forp=iandv =0

igio =0,

[X;, H] = iV, = iPH/E?.

This last equation gives a reasonable velocity, but it
means that the canonical commutation relation of Eq.
(1. 3) is replaced by

[X,, B;] = ib,, + iP,P;/E2.

This extra term is rejected here as being an unneces-
sary complication in a 3-vector theory such as the one
under construction. Along with the difficulty of inter-
preting X, as the time operator, the 4-vector formula-
tion of the position operator leads to enough nonphysi-
cal results such as the problem of [X,, P, ] that it has
been rejected in this paper. Zmuidzinas? and Johnson8
have studied the 4-vector position operator. Johnson8
discusses adding P, P,/M? to the right side of Eq.(1.3)
for 4-vectors and re]ects the idea, thus leaving his
algebra open to the criticism that it produces zero velo-
city.
Equation (1. 4),
[Xi,Xj] =0, (1.4)
has already been defended from a measurement theory
point of view, namely that measuring the x component of
position should not disturb the y component. This treats
the position operator as behaving the same as the
momentum operator, for which

[Pi:Pj] =0

holds. Drawing an analogy between X and P, based part-
ly on this similarity, can be quite misleading, particu-
larly in the study of covariance properties of field
operators, as will be noted in Paper II. The position
operator is not necessarily like either the momentum
operator or a classical coordinate, both of which have
commuting components. The example of a spinning
spherically symmetric particle was cited in the intro-
duction as a case for which the center of relativistic
mass is not quantum mechanically self-commuting,
There are many more quantum examples. This condi-
tion is one of the least justifiable. Because it is a
simple requirement, and because there is no way to
construct a nonzero right side for Eq. (1.4) without
knowing X explicitly, for example as a function of the
spin operator 8, it will be left as a constraint condition,
which will be shown to hold for the field operator X in
Paper II.

Equation (1. 5),
[Xqu] = ’é' Xjﬁ [XirH]}
= 52'{‘391 Vi})

is justified physically purely by analogy to classical
physics.

(1.5)
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Classically the Poisson bracket for the boost operator
K acting on X is
[X:s K lpg = XV

This is derived, following Pryce,3 by considering the
trajectory of a point particle, Figure 1 illustrates the
derivation. The particle traces out a world line X (1),
where 7 is proper time. Any observer will measure a
position X(¢) where!? is that observer’s time parameter.
The 4-vector X#(r) is

XMt) = (1), X(1)).

Let two observers, primed and unprimed, be related by
an infinitesimal Lorentz transformation

Avr, = g4, + €t

Both observers measure the position of the particle at
time /,,
t=t'= tO’

where ¢ = X0(7) and ¢’ = X'%r’). The usual coordinate
covariance holds at any point 7’ on the worldline,

Xe(r) =Xx(1") + er , X'0(1).

But the variation of X* along the worldline is given by

Xe(rr) = xu(r) + XL g
dr

These two equations for X*(r’) give, to first order,

Xu(r)—XH(r) = ~(%(id'r — ek XV
T .

The p = 0 component of this identity is just the relation-
ship between ¢ and ¢/, both of which are measured at i,
Thus

€0 Xv
dt/dr’

which can be substituted back into the identity for p = 4,

i
X'ir’) — Xi(r) = €9 %Xﬁ — €}, X7 — €5X0,

The term with €, is a rotation. For pure boosts
X)) — Xi(r) = €0,ViXi — eit.
This relates the position of the particle measured by

two observers at f = ¢’ = {;. Now using the quantum
mechanical definition

xi(t) = "% x1(p) e
= X'(t) + ie®,[Ki, X4(1)]

to first order, the time-dependent result is Pryce's
commutator

[KI, X4(¢)] = 67t — {ViXi(t).
Removing explicit time dependence leads to
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FIG.1. The two coordinate systems x'# = (¢’,x’) and x* = (¢, %)
are related by x¥ = M x’?, where A#, =g¢ + ¢ isan

infinitesimal Lorentz transformation. X*(r) traces out the
worldline of a point particle.
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t=t, t'=t,
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FIG.2. The slice of the worldtube at ¢ = ¢ is not the same as the
slice at ¢* = {,. Two observers will thus take constant-time averages
over different slices of the distribution of the dynamical property and
their average positions may not agree. '

The covariance which was used in this derivation was a
coordinate covariance relating two observations of a

single point. Throughout the derivation it was assumed
that the particle position behaved as a coordinate point.

The worldline of a point particle which obeys Eq.(1.5)
is called an invariant worldline by Pryce,3 Fleming,?
and Currie, Jordan, and Sudarshan,10 because two
observers agree on the uniqueness of the worldline.
Fleming also called the property “pointlike” rather
than covariant. Any position operator defined as a
spatial average over a density such as the relativistic
center of mass

1
Eow = Jda3qap,(q

will not trace out an invariant worldline. Figure 2
illustrates the different slices through the smeared out
density which two observers would use in their averag-
ing process.

In Paper I, Eq. (1. 5) will be derived for a field opera-
tor density and for single particle matrix elements,
but is found not to hold for the field operator X itself,

X = [d3xyt(@)xy(x).

This does not imply that the operator X is not Lorentz
covariant, only that it does not behave as a coordinate
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point. Covariance is a property which must be exa-
mined for each position operator individually. Further
comments are deferred to Paper II, except to note one
additional misconception about position operators, be-
sides treating them as coordinate-like quantities. If
the operator is written as a 4-vector X , as in Johnson,8
and then treated the same as the 4-momentum P#, one
obtains the algebra
(X ;uXu] =0,

[Pu’Pu]=0’ [Xu,P,,]z—ig“u,

[Mpu'Mpo] = i(gpcMup + gvapo _gupMuo '.'gu'oMpp)s
M5 By ] = 12, B, — 80P.)5

[M“,,,Xp] = i(gupX# —gupr).
Using K; = M;,, the last equation yields
[Kz’Xj] = i‘sino-

This is recognized as the explicitly time dependent part
of Pryce's3 identity, but the iX;V; term is missing. Thus
even for the simple pointlike position operators, it is a
mistake to form a 4-vector operator which is treated
like the 4-momentum under Lorentz transformations.
Equation (1. 5) will be included in the operator algebra
because it does hold for single particle matrix elements
of some common position operators, such as the Diracl
operator Xi,.

Equation (1. 6) is a new way of writing the condition
which the relativistic velocity should satisfy,

VE =P (classical),

1{V,H} =P (quantum mechanical). (1.6)
Equation (1. 6) has advantages over the usual condition
V = P/E, First, there exist solutions to Egs. (1.1)
through (1. 6), but not to Egs. (1.1) through (1. 5) plus

V = P/E. Second, it is the expectation value of V which
must be P/E. This can be true without the operator V
being P/E. For example, it is true for the Dirac velo-
city V, = a@. Equation (1. 6) holds for the Dirac opera-
tor while V,, = P/E does not hold.

Equations (1.7) and (1. 8),

TABLE I.  Physically motivated properties of the position operator
X and velocity operator V
Equations

Property in Text Motivation

[, X;] = i€ ;6 X, (1.1),(2.17) i( is a polar 3-vector opera-
or.

[H,X] =— iV (1.2),(2.21) V is the time derivative of X.

X, ;] = 18 (1.3),(2.16) Canonical commutation rela-
tion, uncertainty principle.

[%,X]=0 (1.4),(2.18) Simultaneous measurability
of components of X.

X K] =5 1%, v} (1.5),(2.23) X is a coordinate- or point-

2T y :

like position operator under
Lorentz boosts,

s{v,H} =P (1.6),(2.38) V reduces to P/E classically,
expectation value of V is
P/E.

[M2,X]=0 (1.7),(2.26) Measuring X does not change
M.

[w2,X] =0 (1.8),(2.43)

Measuring X does not change
S.
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[M2,X] =0 (1.7
and

[WZ’ X] =0, (1.8)

have the physical justification that a measurement of
the position of a particle should not change its mass or
spin. The same equations should hold when V replaces
X; that is, a measurement of velocity should also not
alter the mass or the spin. The physically motivated
properties of the position operator are summarized in
Table 1.

We turn now to the mathematical approach of postulating
as few identities for X and V as are necessary to derive
all others. This will lead to interesting constraints on
the allowable solutions for all the operators. The first
set of equations is the Poincaré algebra for H, P, J,

and X,

[H,H] =0, 2.1)
[H,P] =0, 2.2)
[H,3] = 0, (2.3)
[H,K] = — ip, (2.4)
[P, B] =0, (2.5)
[P ;] = i€;55. Py, (2.6)
[P, K] = — i6, H, (2.7)
[Ji,J]-] = i€iijk’ (2.8)
[7is K] = i€, Ky, (2.9)
[Ki,Ig-] =—i€; . (2.10)

The two Casimir operators of this algebra commute
with all of the generators H, P, J, and K. They are

M2 = PP =H2 — P2 (2.11)
and

W2 = WEW, = W2 — W2,
where

Wy =J°P (2.12)
and

W=—-HJ—P XK. (2.13)

Simpler forms for W,2 and W2 will be derived later.

The set of identities chosen as fundamental to deriving
the X and V algebra begins with explicit representations
for J and K based on both analogies to classical physics
and experience with workable solutions,

J=XXP+§
and
K= i{X,H}

(2.14)

(2.15)

Two new operators have been introduced, the usual spin
operator S and the position operator X. One can now de-
rive constraints on X and 8 such that these representa-
tions of J and K will satisfy the Poincaré algebra. A
minimal set of identities for X and S (but not the only
possible such set) from which all other identities are
economically derived is

(X, P} = i5,, (2.16)
(X, ;] = i€, ;4 Xy, (2.17)
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x,Xx]=0, (2.18)  the striking similarity in behavior between V and 8. This
similarity, plus the condition that Eq. (2. 27) reduce to
(S;,P;] = 0. (2.19)

2 _W2.X] =
Again an appeal to experience (knowing 82 = — W2/M2) [Wo? — W2,X] =0,

leads to the requirement on 82 that it commute with any suggests an explicit solution for V which would allow

operator 4, it to satisfy all of its identities and cause the right side
[4,82] = 0 (2. 20) of Eq.(2.27) to vanish. Note that Eqgs. (1.1) through
’ = : (1.7) have all appeared already in the postulated or de-
rived identities. The solution to the Poincaré algebra
and the constraints necessary for this to be a solution
are summarized in Table II.

This is easily proven for A = P,J, K, or X, but not for
A = H. It is asserted knowing that the spin operator S
is ann(2s + 1) dimensional matrix, where » is an inte-

ger,and that 82 = s(s + 1) is a multiple of the unit mat- No identities involving [H, V] or [X, V], and thus [K, V],
rix and hence must commute with any other operator. could be derived because the forms of H, X, and V were
The solution for J in Eq.(2.14) forces all operators in not explicitly known. Equations (2. 29) and (2. 30) sug-
the set to be matrices of the same dimension as S.
The two final equations essential for deriving the exten- TABLE II.  Extended algebra with constraints and solutions
ded algebra are the definition of V, Equations
Property in Text Comments
VvV = {H,X], (2.21)
Poincaré algebra for (2.1)-(2.10) Holds for all spin.
and the Jacobi identity for commutators, 2,P, 3K
M2 =H2 — P2 (2.11) Cas:xmir operator for Poin~
+B ATl + [C.TA.BT = 2.99 caré algebra.
[4, [B,C]] [B,[C,A]] +[C,[4,B]] = 0, (2.22) W2 = W2 — W2 (2.12),(2.13) Casimir operator for
Poincaré algebra.
R A .
which holds for any three operators A,B,C JoXXP+S 2.14) Standard solution for J; § is
In the Appendix these 22 equations are used to derive usual spin operator,X x P

gives orbital angular momen-
tum operator.

K=1i{XH} (2.15) Standard classical solution
for K, gives constraints on

in a logical sequence many identities for X, V, and S.
In this section the most important identities are collec~-
ted and grouped without proofs. Identities involving X

which can be derived from the first 22 equations are x.
[X;, ;] = i85, (2.16),(1.3) Constraint on X for J and K
[Xi, 19] = %{X]: [Xi: H]}: (2- 23) ! ! to satisfy Poincaré algebra.
[X. S.] =0 (2. 24) [X,,Jj] = i€, ;3 X, (2.17),(1.1) Constraint on X for J and K
©7 ’ to satisfy Poincaré algebra.
[Xi’ V]] = [XJ’ Vi], (2.25) [)Q,X]] =0 (2.18),(1.4) Constraint on X for J and K
[Mz X] -0 (2 26) to satisfy Poincaré algebra.
’ ! ) [S,P]=0 (2.19) Constraint on 8 for J to
i satisfy Poincaré algebra.
(w2,x]=[W2—-W2,X;] =— 2iS;8°P + 5 ViV'P V = i[#,X] (2.21),(1.2)  Definition needed for working
with X,
+ 2ipisz _2 inZ (%, K] = %{X}, [x,H]} (2.23),(1.5) Constraint on X follows from
2 (2.15) and (2.18) or vice
1 versa.
+3 (Pz{Vj’ [VJ’Xi]} - Pj{v. P, [Vj’Xi]})' (2.27M) M2,X] =0 (2.28),(1.7) Condition on X, derivable.
. . . o {H,v} = 2P (2.38),(1.6) Condition on V, derivable.
Here WO — W2 has been Slmphfled to [Xt,SJ] =0 (2. 24) Condition on X, derivable.
. [, S;] = €4S, (2.29) Derivable condition on §,
W2 — W2 =8P S*P — H2S2 — {[S,H]*[S,H]. (2.28) " Rl follows from (2.16) or (2.16)
follows from (2. 24) and
Identities involving V and S are (2.29).
[Vis V;] = die S, (2.30) Derivable condition on V,
. ts V= 20,8
15,5 = i< 2.29) ruets V= 20,825 on
Vi V]] = 4i€;;,5;, (2.30) [S,V;] = i€; 4V (2.31) Derivable and suggests that
[S, Vil = i€,V + €0, B X;, V)], (2.31) + € PylX;, V] gaan}l)éz f,°]"m 8(4) subalge-
. ra if [X;, V,] = 0.
[Si, J]] = Kijksks (2' 32) All above equations are spin-
[T{,J]] — e ijka , (2.33) independent.
[W2,X] =0 (2.27),(2.43), Imposes conditions on right
[V, B] =0, (2.34) (1.8) side of Eq. (2. 27). Constraint
[M2 S] 0 (2 35) condition which is satisfied
,8] =0, . if V.= 2p,8.
[MZ, V] =0, (2. 36) V =2p,8 (2.39) Derived solution for half-
integral spin.
[A’ V2] =0 for A = H, P, J’ (2- 37) X =1V, Derived solution for any
{#,V} = 2P. (2. 38) spin.
H =2p, 8P+ pM Holds if X = /v, and V =
i 2 - g2
There are many more identities for 8 and V collected fzopr‘ﬁ;})f‘ftif;:ge:ai]spif onty

in the Appendix, but Eqgs. (2. 29) through (2. 37) illustrate
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gest that V behaves as 28, except that V is a polar vec-
tor and S is an axial vector. There is no solution for
V using the 2s + 1 dimensional representation of S.
However, a solution is easily found using a 2(2s + 1)
dimensional representation of S and V,
V = 2p,8. (2.39)

Here p, is the 2(2s + 1) dimensional matrix (¢}) such
that

pl2 =1, (2. 40)
[p1,8] =0, (2.41)
[p1,P] = 0. (2.42)

The solution V = 2p, S satisfies all V equations and
leads to

{Wy2 — W2,X] =0, (2.43)

[Wp2 —W2,V] =0, (2.44)
and

IWy2 ~ W2,8] =0. (2.45)

Note explicit forms for X and H have not yet been de-
rived.

Careful derivations of explicit forms for X, V,and H
start from the point that S is represented by an at least
2s + 1 dimensional matrix, so that all other operators
in the set must likewise be represented by at least

2s + 1 dimensional matrices. There are (2s + 1)2
independent 2s + 1 dimensional matrices, and they can
all be formed by taking tensor combinations of the
operator 8, up to tensors of rank 2s. Calling these ten-
sors qu(S), where % indicates the rank of the tensor and
g ranges from — k to + k [for the tensor of rank 2 =1,
suchas X, ¢ = 0,+ corresponds to the z and ¥ 1/V2

{(x + #y) choices for the three g values], the operators
X, V,and H can be expanded in terms of the T,,q(S). For
example, the unit matrix is a tensor of rank # = 0 and
any vector is a tensor of rank 2 = 1, A complete re-
presentation of X would be

1 kl kll
Xq = E ak, B 2 <_ )Tqul (P) Tk"q"(S)'

k'R" q'q"” q q’ CI"
In the above expressionk =1;k’ =0,1,2,...;k" =0,
1,2,...,25q =2, F (x £ &y);q' =—R'y...,t R';q" =
—k",...,+ k”. The *“3-j symbol’”’ imposes rank 2 =1
on X. The tensors in P commute with the tensors in S

and the @’s are functions of scalars. The tensors T, q(S)
have commutation relations with S; and S* given by

[Sss qu(S)] = quq(S):

[S:: T (8)] = [(R * q)(k = ¢ + 1)]Y/2T,, ., (S).
From the above commutation relations, the identity

(X, S]] =0,

and the lack of a preferred direction one can immedi-
ately conclude that the solution for X is a multiple of
the unit matrix Tyo(S) = 1.

(2.24)

Completing the solution for X, one uses the identities

[X,X] =0 (2.18)

and
[x,P]= i8; ;. (2.16)

127
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The most general form in the 2s + 1 dimensional re-
presentation is found to be

X =@V, +iV,In/)1,

where f is a function of M2,W2,and P2, Tna 2(2s + 1)
dimensional space X can have the more general form

X = (al + bp3)(iV, + iV, Inf).

In 2(2s + 1) dimensions three p matrices are introduced,

_{(0-—-141
p2_<u 0),

10
Ps= (o -1>,

which along with the unit matrix and the 2s + 1 T’s give
(2(2s + 1))2 independent matrices. The p, part of the
position operator is ruled out as unphysical because it
gives a different operator for positive and negative
energy states, hence for particles and antiparticles. The
term in In f cannot be ruled out because, as an example,
a change from the weight d3p in momentum space to the
weight d3p/p, introduces just such a term in the posi-
tion operator iV,, where f corresponds to 1/vp,. But as
there is no physical motivation for including this extra
term with a general f, the solution

X =,

is taken as the simplest operator form, corresponding
to the weight d3p in momentum space.

In solving for V one uses the identities
[Vi, V;] = 4i€; S,

and
[Sis §j] = 7€;54 S

(2. 30)

(2.29)

and the fact that V is a polar vector while S is an axial
vector to rule out a 25 + 1 dimensional solution. Again
there is no preferred direction so the most obvious solu-
tion for V is that it be proportional to T, ,(S), which is
just 8 itself. To obtain the correct parity either p; or

Py must be introduced. Thus the most obvious solution
for V is

V = 2(ap; + bp,)s,
where
a2 +b2 =1.

A simple rotation in the p,, p, space allows a or b to be
eliminated, so that

V=2,8 (2. 39)

is the simplest solution. Multiplication by p, gives V =
2ip oS because of the property ot the p matrices
PiPj = 1€;54Pp-

This simple and obvious solution for V is unfortunately
not the general solution, as will be shown.

It is now possible to further simplify the relations de-
rived for X, V, and S. In particular,X and V commute,
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[Xs V]] = [ini, ZpISj] =0,

which simplifies several identities. However, it is
quickly seen that one of the implications of these par-
ticular solutions is that H must be a Hamiltonian of the
half-integral spin type. Because X = {V,, the position
operator picks out the coefficient of P in any operator
with which it is commuted. Thus if the commutator of
X with an operator is independent of P, that operator
must be linear in P. Using the definition of V and this
solution for V

[X,H] = iV = 2ip,8

leads to the result that H is linear in P,
H = 2p,8*P + p3M.

Note the solution
H =p3(20,8°P + p;M).

is rejected for H because H is the zeroth component
of a 4-vector, not a scalar,

The flaw in this solution, which of course has the form
of the Dirac Hamiltonian, is that

H2 = 48P S*P + M2
reduces to
H2 = E2 =P2 4+ M2

only for spin 3 and carefully chosen combinations of
other half-integral spin tensors which reduce to a spin
3~like term S’ P in the Hamiltonian, where S’ is not
the usual spin operator 8. This is a new approach to a
result of Weinberg,12 discussed by Nelson and Good!3
and Hammer, McDonald, and Pursey,14 that only half-
integral spin particles may have Hamiltonians linear
in P. For integral spin, V cannot therefore be indepen-
dent of P and a more general solution must be found
for V and thus the whole algebra, This will be discuss-
ed in Paper III of this series, where the general spin
Foldy—-Wouthuysen transformation (see Case,15 for
example) and Weinberg’s!2 rules will be combined
with the field theoretic results of Paper II.

Even restricting the solution to half-integral spins, the
extended algebra looks interesting. For example, if
[X;s V;] = O then equations (2. 29), (2. 30), and (2. 31) be-
come

[Sis §;] = 7€;52 S (2.29)
[V, V;] = 4ie€, 1S, (2.30)
[S,, V] = i€, 0 Ve (2.31)

Then S and V/2 form an 0(4) subalgebra just as J and K
form an 0(3, 1) subalgebra. Also M2 and W2 are Casi-
mir operators for the whole set H,P,J,K,X, V,and S,
although there might be additional Casimir operators.
In Sec. 3 the mathematical structure of Eqgs. (2.1)
through (2. 44) will be analyzed.

The Dirac position operator X, and velocity operator

V) are a solution to Egs. (2.1) through (2. 45). The com-

plete Dirac solution is
H,=20,8P +p3M,
KD = %{HD ’ XD},
I =X, XP + 8,

Xp =1V,
Vp = 20,8,
82 =s(s+1) = 3,
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The Foldy—-Wouthuysen representation of this solution
is also a solution, for spin 3.

In Paper II the Dirac position operator is constructed
as the field operator center of charge or number den-
sity for a system of spin 3 particles. The algebraic
properties of this field operator can then be derived
directly. It obeys Eqs. (2.1) through (2.45) in its coor-
dinate space representation and in its momentum space
single particle matrix element representation, but not
as a full field operator.

3. ALGEBRAIC PROPERTIES OF THE EXTENDED
SET

As mentioned earlier, it is possible to study the posi-
tion operator X in terms of its representations within
the Poincaré group. This approach has been fruitful
for Giirsey and Orfanides,1! Wightman,16 in a discus-
sion in depth of the localization requirements of New-
ton and Wigner, 5 successfully treated transformation
properties of the position operator within the Poincaré
covering group framework {see Sec. 5, Theorem 6, of
Ref.16). The alternative is to look for structure in
Eqgs. (2.1) through (2. 45) which might reveal new phy-
sics as the Poincaré algebra has revealed new physics.

There are four mathematical difficulties encountered in
studying the extended algebra.

A. The set does not close.

B. The commutation and anticommutation relations are
not all linear in the operators.

C. There is a mixture of commutators and anticom-
mutators.

D. Representation theory for anticommutator product
algebras is much more difficult than for commuta-
tor product algebras.

These difficulties will now be discussed individually,

A. As observed early in Sec. 2 the commutator
[H,X] introduces a new operator V to the set H, P, J, K,
X. Similarly, [H, V] would introduce the “acceleration”
operator A, etec. With no physical constraints on the
number of nonzero time derivatives of X, successive
commutations of H with X introduce new operators.
This can be expressed as a sequence

H,X,] =—iX; =— iV,
1

[H: [H’xo]] = (~ i)zxz =—A,
2 1

(H, ["'QH9X0]“']] = (—i)"X,. (3.1)

n n-1

Technically the lack of closure of the set of